[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Indexing Databases::
Editorial Board::
Executive Members::
Instruction to Authors::
Peer Review::
Articles Archive::
Contact Us::
Site Facilities::
::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
:: ::
Back to the articles list Back to browse issues page
1
Vajihe Varzandeh1 , Yaser Kazemzadeh *2 , Sanaz Mirzayan Shanjani3 , Hossein Shirvani4
1- Ph.D Candidate in Exercise Physiology, Department of Exercise Physiology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran.
2- Assistant Professor, Department of Exercise Physiology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran. , yaser.kazemzadeh@yahoo.com
3- Assistant Professor, Department of Exercise Physiology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran.
4- Associate Professor, Sports Physiology Research Center, Lifestyle Research Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
Abstract:   (425 Views)
This article has no abstract.
Keywords: Exercise [MeSH], beta Catenin [MeSH], T Cell Transcription Factor 1 [MeSH], Aging [MeSH]
Article ID: Vol27-31
Full-Text [PDF 652 kb]   (53 Downloads)    
Type of Study: Original Articles | Subject: Exercise Physiology
References
1. Burr DB. Changes in bone matrix properties with aging. Bone. 2019 Mar;120:85-93. https://doi.org/10.1016/j.bone.2018.10.010. [DOI] [PubMed]
2. Coll PP, Phu S, Hajjar SH, Kirk B, Duque G, Taxel P. The prevention of osteoporosis and sarcopenia in older adults. J Am Geriatr Soc. 2021 May;69(5):1388-98. https://doi.org/10.1111/jgs.17043. [DOI] [PubMed]
3. Liu DX, Hao SL, Yang WX. Crosstalk Between β-CATENIN-Mediated Cell Adhesion and the WNT Signaling Pathway. DNA Cell Biol. 2023 Jan;42(1):1-13. https://doi.org/10.1089/dna.2022.0424. [DOI] [PubMed]
4. Tahoori M, Tafreshi AP, Naghshnejad F, Zeynali B. Transforming Growth Factor-β Signaling Inhibits the Osteogenic Differentiation of Mesenchymal Stem Cells via Activation of Wnt/β-Catenin Pathway. J Bone Metab. 2025 Feb;32(1):11-20. https://doi.org/10.11005/jbm.24.761. [DOI] [PubMed]
5. Chen J, Long F. β-catenin promotes bone formation and suppresses bone resorption in postnatal growing mice. J Bone Miner Res. 2013 May;28(5):1160-69. https://doi.org/10.1002/jbmr.1834. [DOI] [PubMed]
6. Li Z, Xu Z, Duan C, Liu W, Sun J, Han B. Role of TCF/LEF Transcription Factors in Bone Development and Osteogenesis. Int J Med Sci. 2018 Sep 7;15(12):1415-1422. https://doi.org/10.7150/ijms.26741. [DOI] [PubMed]
7. González-Rocha A, Mendez-Sanchez L, Ortíz-Rodríguez MA, Denova-Gutiérrez E. Effect Of Exercise on Muscle Mass, Fat Mass, Bone Mass, Muscular Strength and Physical Performance in Community Dwelling Older Adults: Systematic Review and Meta-Analysis. Aging Dis. 2022 Oct;13(5):1421-35. https://doi.org/10.14336/ad.2022.0215. [DOI] [PubMed]
8. Zhang S, Huang X, Zhao X, Li B, Cai Y, Liang X, Wan Q. Effect of exercise on bone mineral density among patients with osteoporosis and osteopenia: A systematic review and network meta-analysis. J Clin Nurs. 2022 Aug;31(15-16):2100-111. https://doi.org/10.1111/jocn.16101. [DOI] [PubMed]
9. Smith C, Tacey A, Mesinovic J, Scott D, Lin X, Brennan-Speranza TC, et al. The effects of acute exercise on bone turnover markers in middle-aged and older adults: A systematic review. Bone. 2021 Feb;143:115766. https://doi.org/10.1016/j.bone.2020.115766. [DOI] [PubMed]
10. Zhao R, Feng F, Wang X. Exercise interventions and prevention of fall-related fractures in older people: a meta-analysis of randomized controlled trials. Int J Epidemiol. 2017 Feb;46(1):149-61. https://doi.org/10.1093/ije/dyw142. [DOI] [PubMed]
11. Sherrington C, Fairhall N, Wallbank G, Tiedemann A, Michaleff ZA, Howard K, et al. Exercise for preventing falls in older people living in the community: an abridged Cochrane systematic review. Br J Sports Med. 2020 Aug;54(15):885-91. https://doi.org/10.1136/bjsports-2019-101512. [DOI] [PubMed]
12. Faienza MF, Lassandro G, Chiarito M, Valente F, Ciaccia L, Giordano P. How Physical Activity across the Lifespan Can Reduce the Impact of Bone Ageing: A Literature Review. Int J Environ Res Public Health. 2020 Mar;17(6):1862. https://doi.org/10.3390/ijerph17061862. [DOI] [PubMed]
13. Park H, Narayanan SA, Caldwell JT, Behnke BJ, Muller-Delp JM, Delp MD. Effects of aging and exercise training on bone and marrow blood flow and vascular function. Bone. 2025 Mar;192:117335. https://doi.org/10.1016/j.bone.2024.117335. [DOI] [PubMed]
14. Dotzert MS, McDonald MW, Murray MR, Nickels JZ, Noble EG, Melling CWJ. Effect of Combined Exercise Versus Aerobic-Only Training on Skeletal Muscle Lipid Metabolism in a Rodent Model of Type 1 Diabetes. Can J Diabetes. 2018 Aug;42(4):404-11. https://doi.org/10.1016/j.jcjd.2017.09.013. [DOI] [PubMed]
15. Dehghan K, Jalali Dehkodi K, Taghian F, Kargarfard M, Abedi B. The Effect of 12 Weeks of Resistance Training, Total Body Vibration and Combination on Serum Vitamin D Concentration, Bone Mineral Density and Functional Indices in Elderly Men with Osteoporosis: A Randomized Controlled Trial. RSMT. 2023;21(25):147-67. http://dx.doi.org/10.61186/jsmt.21.25.147. [Article in Persian] [Link] [DOI]
16. Ghasemi A, Amini H. The Effect of Four Weeks of Intense Plyometric and Intermittent Exercises with Zinc Supplementation on the Serum Levels of Growth Hormone and Like Growth Factor in Male Volleyball Players. Journal of Sport Biosciences. 2023;15(2):71-85. https://doi.org/10.22059/jsb.2023.358234.1585. [Link] [DOI]
17. Shiri M, Fadai Chafi M R, Gholamrezaei S. [Investigating the Effect of Resistance-Aerobic Training on the Absorption and Resorption Biomarkers of Bone Tissue in Young, Adult and Elderly Male Rats]. JSSU. 2024;32(2):7505-15. http://dx.doi.org/10.18502/ssu.v32i2.15383. [Article in Persian] [Link] [DOI]
18. Chang X, Xu S, Zhang H. Regulation of bone health through physical exercise: Mechanisms and types. Front Endocrinol (Lausanne). 2022 Dec;13:1029475. https://doi.org/10.3389/fendo.2022.1029475. [DOI] [PubMed]
19. Wang L, You X, Zhang L, Zhang C, Zou W. Mechanical regulation of bone remodeling. Bone Res. 2022 Feb;10(1):16. https://doi.org/10.1038/s41413-022-00190-4. [DOI] [PubMed]
20. Choi RB, Robling AG. The Wnt pathway: An important control mechanism in bone's response to mechanical loading. Bone. 2021 Dec;153:116087. https://doi.org/10.1016/j.bone.2021.116087. [DOI] [PubMed]
21. Lombardi G, Ziemann E, Banfi G. Physical Activity and Bone Health: What Is the Role of Immune System? A Narrative Review of the Third Way. Front Endocrinol (Lausanne). 2019 Feb;10:60. https://doi.org/10.3389/fendo.2019.00060. [DOI] [PubMed]
22. Gardinier JD, Al-Omaishi S, Morris MD, Kohn DH. PTH signaling mediates perilacunar remodeling during exercise. Matrix Biol. 2016 May-Jul;52-54:162-75. https://doi.org/10.1016/j.matbio.2016.02.010. [DOI] [PubMed]
23. Bao K, Jiao Y, Xing L, Zhang F, Tian F. The role of wnt signaling in diabetes-induced osteoporosis. Diabetol Metab Syndr. 2023 Apr;15(1):84. https://doi.org/10.1186/s13098-023-01067-0. [DOI] [PubMed]
24. David V, Martin A, Lafage-Proust MH, Malaval L, Peyroche S, Jones DB, et al. Mechanical loading down-regulates peroxisome proliferator-activated receptor gamma in bone marrow stromal cells and favors osteoblastogenesis at the expense of adipogenesis. Endocrinology. 2007 May;148(5):2553-62. https://doi.org/10.1210/en.2006-1704. [DOI] [PubMed]
25. Ren Y, Zhao H, Yin C, Lan X, Wu L, Du X, et al. Adipokines, Hepatokines and Myokines: Focus on Their Role and Molecular Mechanisms in Adipose Tissue Inflammation. Front Endocrinol (Lausanne). 2022 Jul;13:873699. https://doi.org/10.3389/fendo.2022.873699. [DOI] [PubMed]
26. Wrann CD, White JP, Salogiannnis J, Laznik-Bogoslavski D, Wu J, Ma D, et al. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab. 2013 Nov;18(5):649-59. https://doi.org/10.1016/j.cmet.2013.09.008. [DOI] [PubMed]
27. Kim H, Wrann CD, Jedrychowski M, Vidoni S, Kitase Y, Nagano K, et al. Irisin Mediates Effects on Bone and Fat via αV Integrin Receptors. Cell. 2018 Dec;175(7):1756-1768.e17. https://doi.org/10.1016/j.cell.2018.10.025. [DOI] [PubMed]
28. Zhao R, Zhou Y, Li J, Lin J, Cui W, Peng Y, et al. Irisin Regulating Skeletal Response to Endurance Exercise in Ovariectomized Mice by Promoting Akt/β-Catenin Pathway. Front Physiol. 2021 Mar;12:639066. https://doi.org/10.3389/fphys.2021.639066. [DOI] [PubMed]
29. Liu TY, Shi CX, Gao R, Sun HJ, Xiong XQ, Ding L, et al. Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in type 2 diabetic mice and hepatocytes. Clin Sci (Lond). 2015 Nov;129(10):839-50. https://doi.org/10.1042/cs20150009. [DOI] [PubMed]
30. Shi G, Tang N, Qiu J, Zhang D, Huang F, Cheng Y, et al. Irisin stimulates cell proliferation and invasion by targeting the PI3K/AKT pathway in human hepatocellular carcinoma. Biochem Biophys Res Commun. 2017 Nov;493(1):585-91. https://doi.org/10.1016/j.bbrc.2017.08.148. [DOI] [PubMed]
31. Sunters A, Armstrong VJ, Zaman G, Kypta RM, Kawano Y, Lanyon LE, et al. Mechano-transduction in osteoblastic cells involves strain-regulated estrogen receptor alpha-mediated control of insulin-like growth factor (IGF) I receptor sensitivity to Ambient IGF, leading to phosphatidylinositol 3-kinase/AKT-dependent Wnt/LRP5 receptor-independent activation of beta-catenin signaling. J Biol Chem. 2010 Mar;285(12):8743-58. https://doi.org/10.1074/jbc.m109.027086. [DOI] [PubMed]
32. Yang L, Li Q, Zhang J, Li P, An P, Wang C, et al. Wnt7a promotes the osteogenic differentiation of human mesenchymal stem cells. Int J Mol Med. 2021 Jun;47(6):94. https://doi.org/10.3892/ijmm.2021.4927. [DOI] [PubMed]
33. Zhang M, Yan Y, Lim YB, Tang D, Xie R, Chen A, et al. BMP-2 modulates beta-catenin signaling through stimulation of Lrp5 expression and inhibition of beta-TrCP expression in osteoblasts. J Cell Biochem. 2009 Nov;108(4):896-905. https://doi.org/10.1002/jcb.22319. [DOI] [PubMed]
34. Govindaraju D, Atzmon G, Barzilai N. Genetics, lifestyle and longevity: Lessons from centenarians. Appl Transl Genom. 2015 Feb;4:23-32. https://doi.org/10.1016/j.atg.2015.01.001. [DOI] [PubMed]
35. Santos L, Elliott-Sale KJ, Sale C. Exercise and bone health across the lifespan. Biogerontology. 2017 Dec;18(6):931-46. https://doi.org/10.1007/s10522-017-9732-6. [DOI] [PubMed]
36. Kobayashi K, Nojiri H, Saita Y, Morikawa D, Ozawa Y, Watanabe K, et al. Mitochondrial superoxide in osteocytes perturbs canalicular networks in the setting of age-related osteoporosis. Sci Rep. 2015 Mar;5:9148. https://doi.org/10.1038/srep09148. [DOI] [PubMed]
37. Wang J, Jia J, He Q, Xu Y, Liao H, Xiong X, et al. A novel multifunctional mitochondrion-targeting NIR fluorophore probe inhibits tumour proliferation and metastasis through the PPARγ/ROS/β-catenin pathway. Eur J Med Chem. 2023 Oct;258:115435. https://doi.org/10.1016/j.ejmech.2023.115435. [DOI] [PubMed]
38. Ambrogini E, Almeida M, Martin-Millan M, Paik JH, Depinho RA, Han L, et al. FoxO-mediated defense against oxidative stress in osteoblasts is indispensable for skeletal homeostasis in mice. Cell Metab. 2010 Feb;11(2):136-46. https://doi.org/10.1016/j.cmet.2009.12.009. [DOI] [PubMed]
39. Case N, Thomas J, Xie Z, Sen B, Styner M, Rowe D, Rubin J. Mechanical input restrains PPARγ2 expression and action to preserve mesenchymal stem cell multipotentiality. Bone. 2013 Jan;52(1):454-64. https://doi.org/10.1016/j.bone.2012.08.122. [DOI] [PubMed]
40. Zhang L, Zheng YL, Wang R, Wang XQ, Zhang H. Exercise for osteoporosis: A literature review of pathology and mechanism. Front Immunol. 2022 Sep;13:1005665. https://doi.org/10.3389/fimmu.2022.1005665. [DOI] [PubMed]
41. Tong X, Chen X, Zhang S, Huang M, Shen X, Xu J, Zou J. The Effect of Exercise on the Prevention of Osteoporosis and Bone Angiogenesis. Biomed Res Int. 2019 Apr;2019:8171897. https://doi.org/10.1155/2019/8171897. [DOI] [PubMed]
Send email to the article author


XML   Persian Abstract   Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Back to the articles list Back to browse issues page
مجله دانشگاه علوم پزشکی گرگان Journal of Gorgan University of Medical Sciences
Persian site map - English site map - Created in 0.11 seconds with 35 queries by YEKTAWEB 4732
Creative Commons License
This work is licensed under a Creative Commons — Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)