1. Rajaei M, Foroughi MM, Jahani S, Shahidi Zandi M, Hassani Nadiki H. Sensitive detection of morphine in the presence of dopamine with La3+ doped fern-like CuO nanoleaves/MWCNTs modified carbon paste electrode. J Mol Liq. 2019 Jun; 284: 462-72. DOI: 10.1016/j.molliq.2019.03.135 [ Article] [ DOI] 2. Mofazzal Jahromi MA, Sahandi Zangabad P, Moosavi Basri SM, Sahandi Zangabad K, Ghamarypour A, Aref AR, et al. Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing. Adv Drug Deliv Rev. 2018 Jan; 123: 33-64. DOI: 10.1016/j.addr.2017.08.001 [ DOI] [ PubMed] 3. Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 2005 Mar; 1(3): 325-27. DOI: 10.1002/smll.200400093 [ DOI] [ PubMed] 4. Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018 Oct; 11: 1645-58. DOI: 10.2147/IDR.S173867 [ DOI] [ PubMed] 5. Zhu X, Radovic-Moreno AF, Wu J, Langer R, Shi J. Nanomedicine in the Management of Microbial Infection - Overview and Perspectives. Nano Today. 2014 Aug; 9(4): 478-98. DOI: 10.1016/j.nantod.2014.06.003 [ DOI] [ PubMed] 6. Teixeira MC, Sanchez-Lopez E, Espina M, Calpena AC , Silva AM , Veiga FJ, et al. Advances in antibiotic nanotherapy: Overcoming antimicrobial resistance. In: Shegokar R, Souto EB. Emerging Nanotechnologies in Immunology. 1st ed. Elsevier. 2018; pp: 233-59. DOI: 10.1016/B978-0-323-40016-9.00009-9 [ DOI] 7. Zaidi S, Misba L, Khan AU. Nano-therapeutics: A revolution in infection control in post antibiotic era. Nanomedicine. 2017 Oct; 13(7): 2281-301. DOI: 10.1016/j.nano.2017.06.015 [ DOI] [ PubMed] 8. Jijie R, Barras A, Teodorescu F, Boukherroub R, Szunerits S. Advancements on the molecular design of nanoantibiotics: current level of development and future challenges. Mol Syst Des Eng. 2017; 2(4): 349-69. DOI: 10.1039/C7ME00048K [ Article] [ DOI] 9. Saúde a, Franco OL. Functionalization of nanostructures for antibiotic improvement: an interdisciplinary approach. Ther Deliv. 2016 Nov; 7(11): 761-71. DOI: 10.4155/tde-2016-0047 [ DOI] [ PubMed] 10. Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R. Alternative antimicrobial approach: nano-antimicrobial materials. Evid Based Complement Alternat Med. 2015; 2015: 246012. DOI: 10.1155/2015/246012 [ DOI] [ PubMed] 11. Ramanavičius S, Žalnėravičius R, Niaura G, Drabavičius A, Jagminas A. Shell-dependent antimicrobial efficiency of cobalt ferrite nanoparticles. Nano-Structures & Nano-Objects. 2018 Jul; 15: 40-47. DOI: 10.1016/j.nanoso.2018.03.007 [ Article] [ DOI] 12. Chakraborty SP, Sahu SK, Mahapatra SK, Santra S, Bal M, Roy S, et al. Nanoconjugated vancomycin: new opportunities for the development of anti-VRSA agents. Nanotechnology. 2010 Mar; 21(10): 105103. DOI: 10.1088/0957-4484/21/10/105103 [ DOI] [ PubMed] 13. Natan M, Banin E. From Nano to Micro: using nanotechnology to combat microorganisms and their multidrug resistance. FEMS Microbiol Rev. 2017 May; 41(3): 302-22. DOI: 10.1093/femsre/fux003 [ DOI] [ PubMed] 14. Raghunath A, Perumal E. Metal oxide nanoparticles as antimicrobial agents: a promise for the future. Int J Antimicrob Agents. 2017 Feb; 49(2): 137-52. DOI: 10.1016/j.ijantimicag.2016.11.011 [ DOI] [ PubMed] 15. Arias LS, Pessan JP, Miranda Vieira AP, Toito de Lima TM, Botazzo Delbem AC, Monteiro DR. Iron Oxide Nanoparticles for Biomedical Applications: A Perspective on Synthesis, Drugs, Antimicrobial Activity, and Toxicity. Antibiotics (Basel). 2018 Jun; 7(2): 46. DOI: 10.3390/antibiotics7020046 [ DOI] [ PubMed] 16. Wang F, Zhou H, Olademehin OP, Kim SJ, Tao P. Insights into Key Interactions between Vancomycin and Bacterial Cell Wall Structures. ACS Omega. 2018 Jan; 3(1): 37-45. DOI: 10.1021/acsomega.7b01483 [ DOI] [ PubMed] 17. Stogios PJ, Savchenko A. Molecular mechanisms of vancomycin resistance. Protein Sci. 2020 Mar; 29(3): 654-69. DOI: 10.1002/pro.3819 [ DOI] [ PubMed] 18. Faron ML, Ledeboer NA, Buchan BW. Resistance Mechanisms, Epidemiology, and Approaches to Screening for Vancomycin-Resistant Enterococcus in the Health Care Setting. J Clin Microbiol. 2016 Oct; 54(10): 2436-47. DOI: 10.1128/JCM.00211-16 [ DOI] [ PubMed] 19. Ayobami O, Willrich N, Reuss A, Eckmanns T, Markwart R. The ongoing challenge of vancomycin-resistant Enterococcus faecium and Enterococcus faecalis in Europe: an epidemiological analysis of bloodstream infections. Emerg Microbes Infect. 2020 Dec; 9(1): 1180-93. DOI: 10.1080/22221751.2020.1769500 [ DOI] [ PubMed] 20. Griffin JH, Linsell MS, Nodwell MB, Chen Q, Pace JL, Quast KL, et al. Multivalent drug design. Synthesis and in vitro analysis of an array of vancomycin dimers. J Am Chem Soc. 2003 May; 125(21): 6517-31. DOI: 10.1021/ja021273s [ DOI] [ PubMed] 21. Regiel-Futyra A, Dąbrowski J, Mazuryk O, Spiewak K, Kyzioł A, Pucelik B, et al. Bioinorganic antimicrobial strategies in the resistance era. Coord Chem Rev. 2017; 351: 76-117. DOI: 10.1016/J.CCR.2017.05.005 [ Article] [ DOI] 22. Hemeg HA. Nanomaterials for alternative antibacterial therapy. Int J Nanomedicine. 2017 Nov; 12: 8211-25. DOI: 10.2147/IJN.S132163 [ DOI] [ PubMed] 23. Aderibigbe BA. Metal-Based Nanoparticles for the Treatment of Infectious Diseases. Molecules. 2017 Aug; 22(8): 1370. DOI: 10.3390/molecules22081370 [ DOI] [ PubMed] 24. Das K, Tiwari RKS, Shrivastava DK. Techniques for evaluation of medicinal plant products as antimicrobial agent: Current methods and future trends. J Med Plant Res. 2010 Jan; 4(2): 104-11. DOI: 10.5897/JMPR09.030 [ View at Publisher] [ DOI] 25. Helmerhorst EJ, Reijnders IM, van 't Hof W, Veerman EC, Nieuw Amerongen AV. A critical comparison of the hemolytic and fungicidal activities of cationic antimicrobial peptides. FEBS Lett. 1999 Apr; 449(2-3): 105-10. DOI: 10.1016/s0014-5793(99)00411-1 [ DOI] [ PubMed]
|