[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: معرفي مجله :: آخرين شماره :: آرشيو مقالات :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
آرشیو مقالات::
در باره نشریه::
بانک‌ها و نمایه‌نامه‌ها::
هیئت تحریریه::
اعضای اجرایی::
ثبت نام::
راهنمای نگارش مقاله::
ارسال مقاله::
فرم تعهدنامه::
راهنما کار با وب سایت::
برای داوران::
پرسش‌های متداول::
فرایند ارزیابی و انتشار مقاله::
در باره کارآزمایی بالینی::
اخلاق در نشر::
در باره تخلفات پژوهشی::
رضایت‌آگاهانه‌شرکت‌درمطالعه::
لینکهای مفید::
تسهیلات پایگاه::
تماس با ما::
::
جستجو در پایگاه

جستجوی پیشرفته
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
Google Scholar

Citation Indices from GS

AllSince 2019
Citations66672980
h-index3117
i10-index20673

سال ۱۴۰۳ مبارک

:: دوره 20، شماره 2 - ( تابستان 1397 ) ::
جلد 20 شماره 2 صفحات 16-1 برگشت به فهرست نسخه ها
ادجوانت‌های واکسن: گذشته، حال و آینده
پریسا سلیمانی رودی1 ، ابوالقاسم گلیان 2، علیرضا حق پرست3 ، محمدرضا باسامی4 ، رضا مجیدزاده هروی5
1- دانشجوی دکتری تخصصی تغذیه طیور، گروه علوم دامی دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران
2- استاد، گروه علوم دامی دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران ، golian-a@um.ac.ir
3- دانشیار، گروه پاتوبیولوژی دانشکده دامپزشکی، دانشگاه فردوسی مشهد، مشهد، ایران
4- دانشیار، گروه علوم درمانگاهی دانشکده دامپزشکی، دانشگاه فردوسی مشهد، مشهد، ایران
5- استادیار، گروه علوم دامی دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران
چکیده:   (5285 مشاهده)

ادجوانت‌ها جزء مهمی از واکسن‌ها را تشکیل می‌دهند. این ترکیبات برای افزایش ایمنی‌زایی واکسن‌ها از جمله واکسن‌های DNA و تحت واحدی (پپتیدها، پروتئین‌ها و ذرات شبه ویروس)، همچنین برای دستیابی به روش‌های جدید موجود برای پیشگیری و یا درمان بیماری‌های عفونی مزمن و سرطان‌ها مورد استفاده قرار می‌گیرند. در این مقاله با استفاده از 97 عنوان مقاله منتشر شده در نمایه‌نامه‌های Google scholar و PubMed بین سال‌های 1980 لغایت 2016 میلادی به شرح جنبه‌های فرمولاسیون ادجوانت‌ها، بررسی‌های ایمنی و درک مکانیسم فعالیت ادجوانت‌ها و همچنین اثرات جانبی آنها پرداخته شده است. ادجوانت‌ها بر طبق مکانیسم فعالیت به دو گروه عمده تقسیم‌بندی می‌شوند. گروه اول سیستم‌های انتقالی واکسن است که به صورت ذره‌ای بوده و آنتی‌ژن‌های وابسته را به سلول‌های ارایه‌دهنده آنتی‌ژن هدایت می‌کنند. گروه دیگر ادجوانت‌های محرک ایمنی را در بر می‌گیرند که از پاتوژن‌ها مشتق می‌شوند. این گروه اغلب الگوهای مولکولی وابسته به پاتوژن را که در سیستم ایمنی ذاتی فعال هستند؛ تحت تأثیر قرار می‌دهند. ادجوانت‌ها باعث القای پاسخ سلولی و هومورال به‌خصوص آنتی‌بادی‌های خنثی‌کننده می‌گردند که منجر به جلوگیری از اتصال پاتوژن‌ها به گیرنده‌های سلولی آنها می‌شوند. ادجوانت‌های القا کننده ایمنی Th1 به میزان قابل توجهی مورد نیاز هستند. چنین ادجوانت‌هایی ایمنی سلولی مناسبی را در برابر واکسن‌های تحت واحدی که خود ایمنی‌زایی پایینی دارند؛ تهییج می‌کنند. گرچه توجه به ادجوانت‌های جدید که برای واکسن‌های نوین ضروری هستند؛ دارای اهمیت است؛ به دلیل خطرات احتمالی که ممکن است بر سلامتی داشته باشند و عدم اطلاع کافی از مکانیسم عمل آنها، استفاده از این ادجوانت‌ها دارای محدودیت است.

واژه‌های کلیدی: ادجوانت، پاسخ ایمنی، واکسن
متن کامل [PDF 505 kb] [English Abstract]   (16297 دریافت) |   |   چکیده (HTML)  (504 مشاهده)  
نوع مطالعه: مروري | موضوع مقاله: ايمني‌شناسي
فهرست منابع
1. Buonaguro FM, Tornesello ML, Buonaguro L. New adjuvants in evolving vaccine strategies. Expert opinion on biological therapy. 2011; 11(7): 827-32. https://doi.org/10.1517/14712598.2011.587802
2. Tritto E, Mosca F, De Gregorio E. Mechanism of action of licensed vaccine adjuvants. Vaccine. 2009 May; 27(25-26): 3331-34. doi:10.1016/j.vaccine.2009.01.084
3. Guy B. The perfect mix: recent progress in adjuvant research. Nat Rev Microbiol. 2007 Jul; 5(7): 505-17. doi:10.1038/nrmicro1681
4. Alving CR, Peachman KK, Rao M, Reed SG. Adjuvants for human vaccines. Curr Opin Immunol. 2012; 24(3): 310-15. doi:10.1016/j.coi.2012.03.008
5. Batista-Duharte A, Lindblad EB, Oviedo-Orta E. Progress in understanding adjuvant immunotoxicity mechanisms. Toxicol Lett. 2011 Jun;203(2):97-105. doi:10.1016/j.toxlet.2011.03.001
6. Reed SG, Orr MT, Fox CB. Key roles of adjuvants in modern vaccines. Nat Med. 2013 Dec; 19(12): 1597-608. doi:10.1038/nm.3409
7. Savelkoul HF, Ferro VA, Strioga MM, Schijns VE. Choice and Design of Adjuvants for Parenteral and Mucosal Vaccines. Vaccines (Basel). 2015 Mar; 3(1): 148-71. doi:10.3390/vaccines3010148
8. Fox CB, Baldwin SL, Duthie MS, Reed SG, Vedvick TS. Immunomodulatory and physical effects of oil composition in vaccine adjuvant emulsions. Vaccine. 2011 Nov; 29(51): 9563-72. doi:10.1016/j.vaccine.2011.08.089
9. Morel S, Didierlaurent A, Bourguignon P, Delhaye S, Baras B, Jacob V, et al. Adjuvant System AS03 containing -tocopherol modulates innate immune response and leads to improved adaptive immunity. Vaccine. 2011 Mar; 29(13): 2461-73. doi:10.1016/j.vaccine.2011.01.011
10. Mosca F, Tritto E, Muzzi A, Monaci E, Bagnoli F, Iavarone C, et al. Molecular and cellular signatures of human vaccine adjuvants. Proc Natl Acad Sci USA. 2008; 105(30): 10501-6. https://doi.org/10.1073/pnas.0804699105
11. Kool M, Fierens K, Lambrecht BN. Alum adjuvant: some of the tricks of the oldest adjuvant. J Med Microbiol. 2012 Jul; 61(Pt 7): 927-34. doi:10.1099/jmm.0.038943-0
12. Maughan CN, Preston SG, Williams GR. Particulate inorganic adjuvants: recent developments and future outlook. J Pharm Pharmacol. 2015 Mar; 67(3): 426-49. doi:10.1111/jphp.12352
13. Vogel FR, Powell MF. A compendium of vaccine adjuvants and excipients. Pharm Biotechnol. 1995; 6: 141-228.
14. Exley C. When an aluminium adjuvant is not an aluminium adjuvant used in human vaccination programmes. Vaccine. 2012 Mar; 30(12): 2042. doi:10.1016/j.vaccine.2011.10.042
15. Bleam WF, Pfeffer PE, Goldberg S, Taylor RW, Dudley R. A phosphorus-31 solid-state nuclear magnetic resonance study of phosphate adsorption at the boehmite/aqueous solution interface. Langmuir. 1991; 7(8): 1702-12. doi:10.1021/la00056a023
16. Lu F, Boutselis I, Borch RF, Hogenesch H. Control of antigen-binding to aluminum adjuvants and the immune response with a novel phosphonate linker. Vaccine. 2013 Sep; 31(40): 4362-67. doi:10.1016/j.vaccine.2013.07.019
17. Chang M, Shi Y, Nail SL, HogenEsch H, Adams SB, White JL, et al. Degree of antigen adsorption in the vaccine or interstitial fluid and its effect on the antibody response in rabbits. Vaccine. 2001 Apr; 19(20-22): 2884-89.
18. Gupta RK, Chang AC, Griffin P, Rivera R, Siber GR. In vivo distribution of radioactivity in mice after injection of biodegradable polymer microspheres containing 14C-labeled tetanus toxoid. Vaccine. 1996 Oct; 14(15): 1412-16.
19. Hutchison S, Benson RA, Gibson VB, Pollock AH, Garside P, Brewer JM. Antigen depot is not required for alum adjuvanticity. FASEB J. 2012 Mar; 26(3): 1272-79. doi:10.1096/fj.11-184556
20. Munks MW, McKee AS, Macleod MK, Powell RL, Degen JL, Reisdorph NA, et al. Aluminum adjuvants elicit fibrin-dependent extracellular traps in vivo. Blood. 2010 Dec; 116(24): 5191-99. doi:10.1182/blood-2010-03-275529
21. Calabro S, Tortoli M, Baudner BC, Pacitto A, Cortese M, O'Hagan DT, et al. Vaccine adjuvants alum and MF59 induce rapid recruitment of neutrophils and monocytes that participate in antigen transport to draining lymph nodes. Vaccine. 2011 Feb; 29(9): 1812-23. doi:10.1016/j.vaccine.2010.12.090
22. McKee AS, Munks MW, MacLeod MK, Fleenor CJ, Van Rooijen N, Kappler JW, et al. Alum induces innate immune responses through macrophage and mast cell sensors, but these sensors are not required for alum to act as an adjuvant for specific immunity. J Immunol. 2009 Oct; 183(7): 4403-14. doi:10.4049/jimmunol.0900164
23. Mantovani A, Cassatella MA, Costantini C, Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol. 2011 Jul; 11(8): 519-31. doi:10.1038/nri3024
24. Wang HB, Weller PF. Pivotal advance: eosinophils mediate early alum adjuvant-elicited B cell priming and IgM production. J Leukoc Biol. 2008 Apr; 83(4): 817-21. doi:10.1189/jlb.0607392
25. Kuroda E, Ishii KJ, Uematsu S, Ohata K, Coban C, Akira S, et al. Silica crystals and aluminum salts regulate the production of prostaglandin in macrophages via NALP3 inflammasome-independent mechanisms. Immunity. 2011 Apr; 34(4): 514-26. doi:10.1016/j.immuni.2011.03.019
26. Brewer JM, Conacher M, Satoskar A, Bluethmann H, Alexander J. In interleukin-4-deficient mice, alum not only generates T helper 1 responses equivalent to freund's complete adjuvant, but continues to induce T helper 2 cytokine production. Eur J Immunol. 1996 Sep; 26(9): 2062-66. doi:10.1002/eji.1830260915
27. Tavassoli A, Haghparast A. [Inflammasomes and their role in diseases]. J Isfahan Med Sch. 2014; 32(304): 1668-89. [Article in Persian]
28. Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J. NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity. 2004 Mar; 20(3):319-25.
29. Tschopp J, Schroder K. NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production? Nat Rev Immunol. 2010 Mar; 10(3): 210-5. doi:10.1038/nri2725
30. Lambrecht BN, Kool M, Willart MA, Hammad H. Mechanism of action of clinically approved adjuvants. Curr Opin Immunol. 2009 Feb; 21(1): 23-29. doi:10.1016/j.coi.2009.01.004
31. Huber M, Beuscher HU, Rohwer P, Kurrle R, Röllinghoff M, Lohoff M. Costimulation via TCR and IL-1 receptor reveals a novel IL-1-mediated autocrine pathway of Th2 cell proliferation. J Immunol. 1998; 160(9): 4242-47.
32. Kool M, Soullié T, van Nimwegen M, Willart MA, Muskens F, Jung S, et al. Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J Exp Med. 2008 Apr; 205(4): 869-82. doi:10.1084/jem.20071087
33. Marichal T, Ohata K, Bedoret D, Mesnil C, Sabatel C, Kobiyama K, et al. DNA released from dying host cells mediates aluminum adjuvant activity. Nat Med. 2011 Jul; 17(8): 996-1002. doi:10.1038/nm.2403
34. McKee AS, Burchill MA, Munks MW, Jin L, Kappler JW, Friedman RS, et al. Host DNA released in response to aluminum adjuvant enhances MHC class II-mediated antigen presentation and prolongs CD4 T-cell interactions with dendritic cells. Proc Natl Acad Sci U S A. 2013 Mar; 110(12): E1122-31. doi:10.1073/pnas.1300392110
35. Oleszycka E, Lavelle EC. Immunomodulatory properties of the vaccine adjuvant alum. Curr Opin Immunol. 2014 Jun; 28: 1-5. doi:10.1016/j.coi.2013.12.007
36. De Gregorio E, Caproni E, Ulmer JB. Vaccine adjuvants: mode of action. Front Immunol. 2013 Jul; 4: 214. doi:10.3389/fimmu.2013.00214
37. Hogenesch H. Mechanism of immunopotentiation and safety of aluminum adjuvants. Front Immunol. 2013 Jan; 3: 406. doi:10.3389/fimmu.2012.00406
38. Duthie MS, Windish HP, Fox CB, Reed SG. Use of defined TLR ligands as adjuvants within human vaccines. Immunol Rev. 2011 Jan; 239(1): 178-96. doi:10.1111/j.1600-065X.2010.00978.x
39. Yang C, Shi H, Zhou J, Liang Y, Xu H. CpG oligodeoxynucleotides are a potent adjuvant for an inactivated polio vaccine produced from Sabin strains of poliovirus. Vaccine. 2009 Nov; 27(47): 6558-63. doi:10.1016/j.vaccine.2009.08.047
40. Bourne N, Bravo FJ, Francotte M, Bernstein DI, Myers MG, Slaoui M, et al. Herpes simplex virus (HSV) type 2 glycoprotein D subunit vaccines and protection against genital HSV-1 or HSV-2 disease in guinea pigs. J Infect Dis. 2003 Feb; 187(4): 542-49. doi:10.1086/374002
41. Garçon N, Segal L, Tavares F, Van Mechelen M. The safety evaluation of adjuvants during vaccine development: the AS04 experience. Vaccine. 2011 Jun; 29(27): 4453-59. doi:10.1016/j.vaccine.2011.04.046
42. Clapp T, Siebert P, Chen D, Jones Braun L. Vaccines with aluminum-containing adjuvants: optimizing vaccine efficacy and thermal stability. J Pharm Sci. 2011 Feb; 100(2): 388-401. doi:10.1002/jps.22284
43. Relyveld EH. Preparation and use of calcium phosphate adsorbed vaccines. Dev Biol Stand. 1986; 65: 131-36.
44. Jones S, Asokanathan C, Kmiec D, Irvine J, Fleck R, Xing D, et al. Protein coated microcrystals formulated with model antigens and modified with calcium phosphate exhibit enhanced phagocytosis and immunogenicity. Vaccine. 2014; 32(33): 4234-42. doi:10.1016/j.vaccine.2013.09.061
45. Cho WS, Duffin R, Bradley M, Megson IL, Macnee W, Howie SE, et al. NiO and Co3O4 nanoparticles induce lung DTH-like responses and alveolar lipoproteinosis. Eur Respir J. 2012 Mar; 39(3): 546-57. doi:10.1183/09031936.00047111
46. O'Hagan DT. MF59 is a safe and potent vaccine adjuvant that enhances protection against influenza virus infection. Expert Rev Vaccines. 2007 Oct; 6(5): 699-710. doi:10.1586/14760584.6.5.699
47. Vogel FR, Caillet C, Kusters IC, Haensler J. Emulsion-based adjuvants for influenza vaccines. Expert Rev Vaccines. 2009 Apr; 8(4): 483-92. doi:10.1586/erv.09.5
48. Singh M, O'Hagan DT. Recent advances in veterinary vaccine adjuvants. Int J Parasitol. 2003 May; 33(5-6): 469-78.
49. Aucouturier J, Ganne V. Assessment of oil adjuvants in Newcastle disease vaccine. Proceedings of the 20th World Poultry Congress, Montreal, Canada, August; 2000.
50. Durando P, Icardi G, Ansaldi F. MF59-adjuvanted vaccine: a safe and useful tool to enhance and broaden protection against seasonal influenza viruses in subjects at risk. Expert Opin Biol Ther. 2010 Apr; 10(4): 639-51. doi:10.1517/14712591003724662
51. Dupuis M, Denis-Mize K, LaBarbara A, Peters W, Charo IF, McDonald DM, et al. Immunization with the adjuvant MF59 induces macrophage trafficking and apoptosis. Eur J Immunol. 2001 Oct; 31(10): 2910-18. doi:10.1002/1521-4141(2001010)31:10
52. Ellebedy AH, Lupfer C, Ghoneim HE, DeBeauchamp J, Kanneganti TD, Webby RJ. Inflammasome-independent role of the apoptosis-associated speck-like protein containing CARD (ASC) in the adjuvant effect of MF59. Proc Natl Acad Sci U S A. 2011 Feb; 108(7): 2927-32. doi:10.1073/pnas.1012455108
53. Seubert A, Calabro S, Santini L, Galli B, Genovese A, Valentini S, et al. Adjuvanticity of the oil-in-water emulsion MF59 is independent of Nlrp3 inflammasome but requires the adaptor protein MyD88. Proc Natl Acad Sci U S A. 2011 Jul; 108(27): 11169-74. doi:10.1073/pnas.1107941108
54. Vajdy M. Immunomodulatory properties of vitamins, flavonoids and plant oils and their potential as vaccine adjuvants and delivery systems. Expert Opin Biol Ther. 2011 Nov; 11(11): 1501-13. doi:10.1517/14712598.2011.623695
55. Shah RR, Brito LA, O’Hagan DT, Amiji MM. Emulsions as vaccine adjuvants. In: Foged C, Rades T, Perrie Y, Hook S. Subunit Vaccine Delivery. 1st. New York: Springer. 2015; pp: 59-76.
56. Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to work. Immunity. 2010 Oct; 33(4): 492-503. doi:10.1016/j.immuni.2010.10.002
57. Fox CB, Haensler J. An update on safety and immunogenicity of vaccines containing emulsion-based adjuvants. Expert Rev Vaccines. 2013 Jul; 12(7): 747-58. doi:10.1586/14760584.2013.811188
58. Li P, Wang F. Polysaccharides: Candidates of promising vaccine adjuvants. Drug Discov Ther. 2015 Apr; 9(2): 88-93. doi:10.5582/ddt.2015.01025
59. Agmon-Levin N, Hughes GR, Shoenfeld Y. The spectrum of ASIA: Autoimmune (Auto-inflammatory) Syndrome induced by Adjuvants. Lupus. 2012 Feb; 21(2): 118-20. doi:10.1177/0961203311429316
60. Bekerecioglu M, Onat AM, Tercan M, Buyukhatipoglu H, Karakok M, Isik D, et al. The association between silicone implants and both antibodies and autoimmune diseases. Clin Rheumatol. 2008 Feb; 27(2): 147-50. doi:10.1007/s10067-007-0659-1
61. Hida S, Miura NN, Adachi Y, Ohno N. Cell wall beta-glucan derived from Candida albicans acts as a trigger for autoimmune arthritis in SKG mice. Biol Pharm Bull. 2007 Aug; 30(8): 1589-92.
62. Yoshitomi H, Sakaguchi N, Kobayashi K, Brown GD, Tagami T, Sakihama T, et al. A role for fungal {beta}-glucans and their receptor Dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice. J Exp Med. 2005 Mar; 201(6): 949-60. doi:10.1084/jem.20041758
63. Shakya AK, Nandakumar KS. Applications of polymeric adjuvants in studying autoimmune responses and vaccination against infectious diseases. J R Soc Interface. 2013 Feb; 10(79): 20120536. doi:10.1098/rsif.2012.0536
64. Petrovsky N. Sugar-based immune adjuvants for use in recombinant, viral vector, DNA and other styles of vaccines. In: Lukashevich IS, Shirwan H. Novel technologies for vaccine development. Chap 7. 1st ed. New York: Springer. 2014; pp: 179-200.
65. Huang MH, Huang CY, Lien SP, Siao SY, Chou AH, Chen HW, et al. Development of multi-phase emulsions based on bioresorbable polymers and oily adjuvant. Pharm Res. 2009 Aug; 26(8): 1856-62. doi:10.1007/s11095-009-9898-y
66. Nishiyama A, Tsuji S, Yamashita M, Henriksen RA, Myrvik QN, Shibata Y. Phagocytosis of N-acetyl-D-glucosamine particles, a Th1 adjuvant, by RAW 264.7 cells results in MAPK activation and TNF-alpha, but not IL-10, production. Cell Immunol. 2006 Feb; 239(2): 103-12. doi:10.1016/j.cellimm.2006.04.003
67. Rawal N, Rajagopalan R, Salvi VP. Stringent regulation of complement lectin pathway C3/C5 convertase by C4b-binding protein (C4BP). Mol Immunol. 2009 Sep; 46(15): 2902-10. doi:10.1016/j.molimm.2009.07.006
68. Dong SF, Chen JM, Zhang W, Sun SH, Wang J, Gu JX, et al. Specific immune response to HBsAg is enhanced by beta-glucan oligosaccharide containing an alpha-(1→ 3)-linked bond and biased towards M2/Th2. International immunopharmacology. 2007; 7(6): 725-33. https://doi.org/10.1016/j.intimp.2007.01.004
69. Haghparast A, Zakeri A, Ebrahimian M, Ramezani M. Targeting pattern recognition receptors (PRRs) in nano-adjuvants: current perspectives. Current Bionanotechnology. 2016; 2(1): 47-59. doi:10.2174/2213529402666160601125159
70. De Geest BG, Willart MA, Hammad H, Lambrecht BN, Pollard C, Bogaert P, et al. Polymeric multilayer capsule-mediated vaccination induces protective immunity against cancer and viral infection. ACS Nano. 2012 Mar; 6(3): 2136-49. doi:10.1021/nn205099c
71. Maisonneuve C, Bertholet S, Philpott DJ, De Gregorio E. Unleashing the potential of NOD- and Toll-like agonists as vaccine adjuvants. Proc Natl Acad Sci U S A. 2014 Aug; 111(34): 12294-99. doi:10.1073/pnas.1400478111
72. Haghparast A, Heidari Kharaji M, Malvandi AM. Down-regulation of CD14 transcripts in human glioblastoma cell line U87 MG. Iran J Immunol. 2011 Jun; 8(2): 111-19. doi:IJIv8i2A7
73. Tabatabaeizadeh SE, Haghparast A. [Improving the effectiveness of adjuvants: Targeting innate immune receptors with a special focus on toll-like receptor agonists]. J Isfahan Med Sch. 2013; 30(214): 1986-2009. [Article in Persian]
74. Zakeri A, Borji H, Haghparast A. Interaction between helminths and toll-like receptors: possibilities and potentials for asthma therapy. Int Rev Immunol. 2016 May; 35(3): 219-48. doi:10.3109/08830185.2015.1096936
75. Medzhitov R.Recognition of microorganisms and activation of the immune response. Nature. 2007 Oct; 449(7164): 819-26. doi:10.1038/nature06246
76. Magalhaes JG, Rubino SJ, Travassos LH, Le Bourhis L, Duan W, Sellge G, et al. Nucleotide oligomerization domain-containing proteins instruct T cell helper type 2 immunity through stromal activation. Proc Natl Acad Sci U S A. 2011 Sep; 108(36): 14896-901. doi:10.1073/pnas.1015063108
77. Kharaji MH, Haghparast A. Simultaneous detection of pattern recognition receptors (PRRs) in human peripheral blood mononuclear cells (PBMC) by touchdown PCR. World Applied Sciences Journal. 2010; 9(5): 479-83.
78. Gupta SK, Deb R, Dey S, Chellappa MM. Toll-like receptor-based adjuvants: enhancing the immune response to vaccines against infectious diseases of chicken. Expert Rev Vaccines. 2014 Jul; 13(7): 909-25. doi:10.1586/14760584.2014.920236
79. Bode C, Zhao G, Steinhagen F, Kinjo T, Klinman DM. CpG DNA as a vaccine adjuvant. Expert Rev Vaccines. 2011 Apr; 10(4): 499-511. doi:10.1586/erv.10.174
80. O'Neill LA. Signal transduction pathways activated by the IL-1 receptor/toll-like receptor superfamily. Curr Top Microbiol Immunol. 2002; 270: 47-61.
81. Brightbill HD, Modlin RL. Toll-like receptors: molecular mechanisms of the mammalian immune response. Immunology. 2000; 101(1): 1-10. doi:10.1046/j.1365-2567.2000.00093.x
82. Cook DN, Pisetsky DS, Schwartz DA. Toll-like receptors in the pathogenesis of human disease. Nat Immunol. 2004 Oct; 5(10): 975-9. doi:10.1038/ni1116
83. Suzuki N, Suzuki S, Yeh WC. IRAK-4 as the central TIR signaling mediator in innate immunity. Trends Immunol. 2002 Oct; 23(10): 503-6.
84. Pasare C, Medzhitov R. Toll-like receptors: linking innate and adaptive immunity. Microbes Infect. 2004 Dec; 6(15): 1382-87. doi:10.1016/j.micinf.2004.08.018
85. Gupta SK, Singh LV, Chellappa MM, Dey S. Toll-like receptor ligands and their combinations as adjuvants-current research and its relevance in chickens. World's Poultry Science Journal. 2015; 71(1): 95-110. https://doi.org/10.1017/S0043933915000094
86. Spickler AR, Roth JA. Adjuvants in veterinary vaccines: modes of action and adverse effects. J Vet Intern Med. 2003 May-Jun; 17(3): 273-81.
87. Prater MR, Johnson VJ, Germolec DR, Luster MI, Holladay SD. Maternal treatment with a high dose of CPG ODN during gestation alters fetal craniofacial and distal limb development in c57bl/6 mice. Vaccine. 2006; 24(3): 263-71. https://doi.org/10.1016/j.vaccine.2005.07.105
88. Burstein HJ. Cognitive side-effects of adjuvant treatments. Breast. 2007 Dec; 16(Suppl 2): S166-68. doi:10.1016/j.breast.2007.07.027
89. Heegaard PM, Dedieu L, Johnson N, Le Potier MF, Mockey M, Mutinelli F, et al. Adjuvants and delivery systems in veterinary vaccinology: current state and future developments. Arch Virol. 2011 Feb; 156(2): 183-202. doi:10.1007/s00705-010-0863-1
90. Gupta RK, Relyveld EH, Lindblad EB, Bizzini B, Ben-Efraim S, Gupta CK. Adjuvants--a balance between toxicity and adjuvanticity. Vaccine. 1993; 11(3): 293-306.
91. Sun HX, Xie Y, Ye YP. ISCOMs and ISCOMATRIX. Vaccine. 2009 Jul; 27(33): 4388-401. doi:10.1016/j.vaccine.2009.05.032
92. Sokolovska A, Hem SL, HogenEsch H. Activation of dendritic cells and induction of CD4(+) T cell differentiation by aluminum-containing adjuvants. Vaccine. 2007 Jun; 25(23): 4575-85. doi:10.1016/j.vaccine.2007.03.045
93. Shaw CA, Li D, Tomljenovic L. Are there negative CNS impacts of aluminum adjuvants used in vaccines and immunotherapy? Immunotherapy. 2014; 6(10): 1055-71. doi:10.2217/imt.14.81
94. Tomljenovic L, Shaw CA. Aluminum vaccine adjuvants: are they safe? Curr Med Chem. 2011; 18(17): 2630-37.
95. Campbell A, Becaria A, Lahiri DK, Sharman K, Bondy SC. Chronic exposure to aluminum in drinking water increases inflammatory parameters selectively in the brain. J Neurosci Res. 2004 Feb; 75(4): 565-72. doi:10.1002/jnr.10877
96. Walton JR. Functional impairment in aged rats chronically exposed to human range dietary aluminum equivalents. Neurotoxicology. 2009 Mar; 30(2): 182-93. doi:10.1016/j.neuro.2008.11.012
97. Nohynek H, Jokinen J, Partinen M, Vaarala O, Kirjavainen T, Sundman J, et al. AS03 adjuvanted AH1N1 vaccine associated with an abrupt increase in the incidence of childhood narcolepsy in Finland. PLoS One. 2012; 7(3): e33536. doi:10.1371/journal.pone.0033536
ارسال پیام به نویسنده مسئول


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Soleimani Roudi P, Golian A, Haghparast A, Bassami M R, Majidzadeh Heravi R. Vaccine adjuvants: past, current and future. J Gorgan Univ Med Sci 2018; 20 (2) :1-16
URL: http://goums.ac.ir/journal/article-1-3379-fa.html

سلیمانی رودی پریسا، گلیان ابوالقاسم، حق پرست علیرضا، باسامی محمدرضا، مجیدزاده هروی رضا. ادجوانت‌های واکسن: گذشته، حال و آینده. مجله علمي دانشگاه علوم پزشكي گرگان. 1397; 20 (2) :1-16

URL: http://goums.ac.ir/journal/article-1-3379-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 20، شماره 2 - ( تابستان 1397 ) برگشت به فهرست نسخه ها
مجله دانشگاه علوم پزشکی گرگان Journal of Gorgan University of Medical Sciences
Persian site map - English site map - Created in 0.08 seconds with 40 queries by YEKTAWEB 4645