[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: معرفي مجله :: آخرين شماره :: آرشيو مقالات :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
:: دوره 20، شماره 2 - ( تابستان 1397 ) ::
جلد 20 شماره 2 صفحات 17-27 برگشت به فهرست نسخه ها
اثر ورزش بر هیپرتروفی قلبی ناشی از افزایش سن، نقش فشار اکسایشی و برخی از پروتئین کینازهای فعال شده با میتوژن
بهروز بقایی1 ، معرفت سیاه کوهیان* 2، پوران کریمی3 ، آنا ماریا بوتلهو تیکسیرا4 ، سعید دباغ نیکوخصلت5
1- دکتری تخصصی فیزیولوژی ورزشی قلب و عروق و تنفس، گروه تربیت بدنی و علوم ورزشی، دانشکده علوم تربیتی و روانشناسی، دانشگاه محقق اردبیلی، اردبیل،
2- استاد فیزیولوژی ورزشی، گروه تربیت بدنی و علوم ورزشی، دانشکده علوم تربیتی و روانشناسی، دانشگاه محقق اردبیلی، اردبیل، ایران ، marefat_siahkuhian@yahoo.com
3- استادیار بیوشیمی بالینی، مرکز تحقیقات علوم اعصاب، دانشگاه علوم پزشکی تبریز، تبریز، ایران
4- دانشیار فیزیولوژی ورزشی، گروه تربیت بدنی و علوم ورزشی، دانشگاه کویمبرا، کویمبرا، پرتغال
5- دانشیار فیزیولوژی ورزشی، گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه تبریز، تبریز، ایران
چکیده:   (1262 مشاهده)

افزایش سن فرایندی غیرقابل اجتناب بوده و با گسترش بیماری‌های مختلفی همراه است که هیپرتروفی قلبی از آن جمله محسوب می‌شود. هیپرتروفی در دو نوع پاتولوژیک و فیزیولوژیک می‌تواند رخ دهد و هر دو نوع آن به انواع اکسنتریک و کانسنتریک قابل تقسیم است. در این مقاله با استفاده از 79 عنوان مقاله منتشر شده در نمایه‌نامه‌های PubMed و SID بین سال‌های 1976 لغایت 2016 به اثر بزرگسالی و ورزش بر هیپرتروفی قلبی پاتولوژیک، فیزیولوژیک، فشار اکسایشی برخی از پروتئین کیناز های فعال شده با میتوژن پرداخته شده است. افزایش سن در صورتی که با بی‌تحرکی همراه باشد؛ از طریق فرایندهای مختلف به هیپرتروفی قلبی پاتولوژیک منجر می‌شود. در این میان نقش خانواده پروتئین کینازهای فعال شده با میتوژن و فشار اکسایشی اهمیت بسیاری دارد. بزرگسالی در صورتی که با کم‌تحرکی همراه باشد؛ می‌تواند از طریق اختلال در عملکرد میتوکندری‌ها به افزایش فشار اکسایشی منجر شود. به‌نحوی که فشار اکسایشی می‌تواند بر فعالیت MAPK ها موثر باشد. خانواده MAPK ها در مجموعه متنوعی از رخدادهای بیولوژیک همانند تکثیر، تمایز، متابولیسم، تحرک، بقا و آپوپتوز تقش دارند. نقطه اوج انتقال سیگنال و تنظیم این رخدادهای بیولوژیک در وهله اول به‌وسیله چهار خانواده فرعی MAPK شامل کیناز تنظیم شده با سیگنال خارج سلولی (ERK1/2)، کیناز c-Jun NH2-terminal (JNK1, -2, -3) کیناز P38 (a,B,y, S) و MAPK های بزرگ (BMK یا ERK5) انجام می‌شود. در این مقاله بر روی دو نوع ERK1/2 و P38 تمرکز شده است که در ایجاد هیپرتروفی قلبی نقش مهمی دارند. به‌نحوی که مقادیر آنها در اثر بزرگسالی تغییراتی می‌یابد و این تغییرات با گسترش هیپرتروفی پاتولوژیک همراه است. با این حال فعالیت ورزشی قادر به کنترل روند هیپرتروفی پاتولوژیک بوده و می‌تواند آن را به سمت هیپرتروفی فیزیولوژیک سوق دهد. به نحوی که فعالیت ورزشی قادر به کنترل و یا کاهش فشار اکسایشی، ERK1/2 و P38 بوده و در نهایت می‌تواند بر هیپرتروفی قلبی موثر باشد.

واژه‌های کلیدی: بزرگسالی، ورزش، هیپرتروفی قلبی، پروتئین کیناز فعال شده با میتوژن، فشار اکسایشی
متن کامل [PDF 369 kb] [English Abstract]   (187 دریافت)    
نوع مطالعه: مروري | موضوع مقاله: فیزیولوژی ورزشی
* نشانی نویسنده مسئول: اردبیل، دانشگاه محقق اردبیلی، دانشکده علوم تربیتی و روانشناسی، گروه علوم ورزشی، تلفن 33530456-041، نمابر 33520457
فهرست منابع
1. Lee HY, Oh BH. Aging and arterial stiffness. Circ J. 2010 Nov; 74(11): 2257-62.
2. Rosen BD, Fernandes VR, Nasir K, Helle-Valle T, Jerosch-Herold M, Bluemke DA, et al. Age, increased left ventricular mass, and lower regional myocardial perfusion are related to greater extent of myocardial dyssynchrony in asymptomatic individuals: the multi-ethnic study of atherosclerosis. Circulation. 2009 Sep; 120(10): 859-66. doi:10.1161/CIRCULATIONAHA.108.787408
3. Tartibian B, Botelho Teixeira AM, Baghaiee B. Moderate intensity exercise is associated with decreased angiotensin-converting enzyme, increased beta2-adrenergic receptor gene expression, and lower blood pressure in middle-aged men. J Aging Phys Act. 2015 Apr; 23(2): 212-20. doi:10.1123/japa.2013-0136
4. Neilan TG, Coelho-Filho OR, Shah RV, Abbasi SA, Heydari B, Watanabe E, et al. Myocardial extracellular volume fraction from T1 measurements in healthy volunteers and mice: relationship to aging and cardiac dimensions. JACC Cardiovasc Imaging. 2013 Jun; 6(6): 672-83. doi:10.1016/j.jcmg.2012.09.020
5. Strait JB, Lakatta EG. Aging-associated cardiovascular changes and their relationship to heart failure. Heart Fail Clin. 2012 Jan; 8(1): 143-64. doi:10.1016/j.hfc.2011.08.011
6. Anton B, Vitetta L, Cortizo F, Sali A. Can we delay aging? The biology and science of aging. Ann N Y Acad Sci. 2005 Dec; 1057: 525-35. doi:10.1196/annals.1356.040
7. Baghaiee B, Siahkuhian M, Hakimi M, Bolboli L, Ahmadi Dehrashid K. [The effect paraoxonase-1, hydrogen peroxide and adiponectin changes on systolic and diastolic blood pressure of men’s with high blood pressure fallowing to 12 week moderate aerobic exercise]. J Shahrekord Univ Med Sci. 2016; 18(1): 81-92. [Article in Persian]
8. Lakatta EG, Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part I: aging arteries: a "set up" for vascular disease. Circulation. 2003 Jan; 107(1): 139-46.
9. Lakatta EG, Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part II: the aging heart in health: links to heart disease. Circulation. 2003 Jan; 107(2): 346-54.
10. Matsui Y, Eguchi K, Shibasaki S, Ishikawa J, Shimada K, Kario K. Morning hypertension assessed by home monitoring is a strong predictor of concentric left ventricular hypertrophy in patients with untreated hypertension. J Clin Hypertens (Greenwich). 2010 Oct; 12(10): 776-83. doi:10.1111/j.1751-7176.2010.00350.x
11. Yamamoto S, James TN, Sawada K, Okabe M, Kawamura K. Generation of new intercellular junctions between cardiocytes. A possible mechanism compensating for mechanical overload in the hypertrophied human adult myocardium. Circ Res. 1996 Mar; 78(3): 362-70.
12. Sawada K, Kawamura K. Architecture of myocardial cells in human cardiac ventricles with concentric and eccentric hypertrophy as demonstrated by quantitative scanning electron microscopy. Heart Vessels. 1991; 6(3): 129-42.
13. Linzbach AJ. Hypertrophy, hyperplasia and structural dilatation of the human heart. Adv Cardiol. 1976; 18: 1-14. doi:10.1159/000399507
14. Kehat I, Davis J, Tiburcy M, Accornero F, Saba-El-Leil MK, Maillet M, et al. Extracellular signal-regulated kinases 1 and 2 regulate the balance between eccentric and concentric cardiac growth. Circ Res. 2011 Jan; 108(2): 176-83. doi:10.1161/CIRCRESAHA.110.231514
15. Cantor EJ, Babick AP, Vasanji Z, Dhalla NS, Netticadan T. A comparative serial echocardiographic analysis of cardiac structure and function in rats subjected to pressure or volume overload. J Mol Cell Cardiol. 2005 May; 38(5): 777-86. doi:10.1016/j.yjmcc.2005.02.012
16. Müller AL, Dhalla NS. Differences in concentric cardiac hypertrophy and eccentric hypertrophy. In: Ostadal B, Dhalla NS. 4th ed. New York: Cardiac Adaptations, Springer. 2013; pp: 147-66.
17. Saremi A, Bahrami A, Jamilian M, Moazami Goodarzi P. [Effects of 8 weeks pilates training on anti-mullerian hormone level and cardiometabolic parameters in polycystic ovary syndrome women]. J Arak Univ Med Sci. 2014; 17(9): 59-69. [Article in Persian]
18. Baggish AL, Wang F, Weiner RB, Elinoff JM, Tournoux F, Boland A, et al. Training-specific changes in cardiac structure and function: a prospective and longitudinal assessment of competitive athletes. J Appl Physiol (1985). 2008 Apr; 104(4): 1121-8. doi:10.1152/japplphysiol.01170.2007
19. Vinereanu D, Florescu N, Sculthorpe N, Tweddel AC, Stephens MR, Fraser AG. Left ventricular long-axis diastolic function is augmented in the hearts of endurance-trained compared with strength-trained athletes. Clin Sci (Lond). 2002 Sep; 103(3): 249-57. doi:10.1042/
20. Scharf M, Brem MH, Wilhelm M, Schoepf UJ, Uder M, Lell MM. Atrial and ventricular functional and structural adaptations of the heart in elite triathletes assessed with cardiac MR imaging. Radiology. 2010 Oct; 257(1): 71-9. [DOI]
21. Fagard R. Athlete's heart. Heart. 2003 Dec;89(12):1455-61.
22. Mihl C, Dassen WRM, Kuipers H. Cardiac remodelling: concentric versus eccentric hypertrophy in strength and endurance athletes. Neth Heart J. 2008 Apr; 16(4): 129-33.
23. Serra AJ, Higuchi ML, Ihara SS, Antônio EL, Santos MH, Bombig MT, et al. Exercise training prevents beta-adrenergic hyperactivity-induced myocardial hypertrophy and lesions. Eur J Heart Fail. 2008 Jun; 10(6): 534-9. doi:10.1016/j.ejheart.2008.03.016
24. Serra AJ, Santos MH, Bocalini DS, Antônio EL, Levy RF, Santos AA, et al. Exercise training inhibits inflammatory cytokines and more than prevents myocardial dysfunction in rats with sustained beta-adrenergic hyperactivity. J Physiol. 2010 Jul; 588(Pt 13): 2431-42. doi:10.1113/jphysiol.2010.187310
25. Fernandes T, Soci UP, Oliveira EM. Eccentric and concentric cardiac hypertrophy induced by exercise training: microRNAs and molecular determinants. Braz J Med Biol Res. 2011 Sep; 44(9): 836-47.
26. Betteridge DJ. What is oxidative stress? Metabolism. 2000 Feb; 49(2 Suppl 1): 3-8.
27. Baghaiee B, Nakhostin-Roohi B, Siahkuhian M, Bolboli L. [Effect of oxidative stress and exercise-induced adaptations]. J Gorgan Univ Med Sci. 2015; 17(2): 1-15. [Article in Persian]
28. Roh J, Rhee J, Chaudhari V, Rosenzweig A. The role of exercise in cardiac aging: from physiology to molecular mechanisms. Circ Res. 2016 Jan; 118(2): 279-95. doi:10.1161/CIRCRESAHA.115.305250
29. Maulik SK, Kumar S. Oxidative stress and cardiac hypertrophy: a review. Toxicol Mech Methods. 2012 Jun; 22(5): 359-66. doi:10.3109/15376516.2012.666650
30. Aikawa R, Nagai T, Tanaka M, Zou Y, Ishihara T, Takano H, et al. Reactive oxygen species in mechanical stress-induced cardiac hypertrophy. Biochem Biophys Res Commun. 2001 Dec; 289(4): 901-7. doi:10.1006/bbrc.2001.6068
31. Tanaka K, Honda M, Takabatake T. Redox regulation of MAPK pathways and cardiac hypertrophy in adult rat cardiac myocyte. J Am Coll Cardiol. 2001 Feb; 37(2): 676-85.
32. Sabri A, Byron KL, Samarel AM, Bell J, Lucchesi PA. Hydrogen peroxide activates mitogen-activated protein kinases and Na+-H+ exchange in neonatal rat cardiac myocytes. Circ Res. 1998 Jun; 82(10): 1053-62.
33. Zelarayan L, Renger A, Noack C, Zafiriou MP, Gehrke C, van der Nagel R, et al. NF-kappaB activation is required for adaptive cardiac hypertrophy. Cardiovasc Res. 2009 Dec; 84(3): 416-24. doi:10.1093/cvr/cvp237
34. Purcell NH, Tang G, Yu C, Mercurio F, DiDonato JA, Lin A. Activation of NF-kappa B is required for hypertrophic growth of primary rat neonatal ventricular cardiomyocytes. Proc Natl Acad Sci U S A. 2001 Jun; 98(12): 6668-73. doi:10.1073/pnas.111155798
35. Hirotani S, Otsu K, Nishida K, Higuchi Y, Morita T, Nakayama H, et al. Involvement of nuclear factor-kappaB and apoptosis signal-regulating kinase 1 in G-protein-coupled receptor agonist-induced cardiomyocyte hypertrophy. Circulation. 2002 Jan; 105(4): 509-15.
36. Hikoso S, Yamaguchi O, Nakano Y, Takeda T, Omiya S, Mizote I, et al. The IkB kinase B/nuclear factor kB signaling pathway protects the heart from hemodynamic stress mediated by the regulation of manganese superoxide dismutase expression. Circulation Research. 2009; 105: 70-79. https://doi.org/10.1161/CIRCRESAHA.108.193318
37. Sag CM, Santos CX, Shah AM. Redox regulation of cardiac hypertrophy. J Mol Cell Cardiol. 2014 Aug; 73: 103-11. doi:10.1016/j.yjmcc.2014.02.002
38. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 2002 Dec; 298(5600): 1911-2. doi:10.1126/science.1072682
39. Camenisch TD, Spicer AP, Brehm-Gibson T, Biesterfeldt J, Augustine ML, Calabro A Jr, et al. Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J Clin Invest. 2000 Aug; 106(3): 349-60.
40. Ferrell JE Jr. Tripping the switch fantastic: how a protein kinase cascade can convert graded inputs into switch-like outputs. Trends Biochem Sci. 1996 Dec; 21(12): 460-6.
41. Frey N, Olson EN. Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol. 2003; 65: 45-79. doi:10.1146/annurev.physiol.65.092101.142243
42. Rose BA, Force T, Wang Y. Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev. 2010 Oct; 90(4): 1507-46. doi:10.1152/physrev.00054.2009
43. Gerits N, Kostenko S, Moens U. In vivo functions of mitogen-activated protein kinases: conclusions from knock-in and knock-out mice. Transgenic Res. 2007 Jun; 16(3): 281-314. doi:10.1007/s11248-006-9052-0
44. Ramos JW. The regulation of extracellular signal-regulated kinase (ERK) in mammalian cells. Int J Biochem Cell Biol. 2008; 40(12): 2707-19. doi:10.1016/j.biocel.2008.04.009
45. Yoon S, Seger R. The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors. 2006 Mar; 24(1): 21-44. doi:10.1080/02699050500284218
46. Junttila MR, Li SP, Westermarck J. Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. FASEB J. 2008 Apr; 22(4): 954-65. doi:10.1096/fj.06-7859rev
47. Han J, Lee JD, Bibbs L, Ulevitch RJ. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science. 1994 Aug; 265(5173): 808-11.
48. Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D, et al. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature. 1994 Dec; 372(6508): 739-46. doi:10.1038/372739a0
49. Jiang Y, Chen C, Li Z, Guo W, Gegner JA, Lin S, Han J. Characterization of the structure and function of a new mitogen-activated protein kinase (p38beta). J Biol Chem. 1996 Jul; 271(30): 17920-26.
50. Ono K, Han J. The p38 signal transduction pathway: activation and function. Cell Signal. 2000 Jan; 12(1): 1-13.
51. Baghaiee B, Teixeira AB, Tartibian B. Moderate aerobic exercise increases SOD-2 gene expression and decreases leptin and malondialdehyde in middle-aged men. Science & Sports. 2016; 31(3): e55-e63. https://doi.org/10.1016/j.scispo.2015.12.003
52. Cuenda A, Rousseau S. P38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta. 2007 Aug; 1773(8): 1358-75. doi:10.1016/j.bbamcr.2007.03.010
53. Tanno M, Bassi R, Gorog DA, Saurin AT, Jiang J, Heads RJ, et al. Diverse mechanisms of myocardial p38 mitogen-activated protein kinase activation: evidence for MKK-independent activation by a TAB1-associated mechanism contributing to injury during myocardial ischemia. Circ Res. 2003 Aug; 93(3): 254-61. doi:10.1161/01.RES.0000083490.43943.85
54. Salvador JM, Mittelstadt PR, Guszczynski T, Copeland TD, Yamaguchi H, Appella E, et al. Alternative p38 activation pathway mediated by T cell receptor-proximal tyrosine kinases. Nat Immunol. 2005 Apr; 6(4): 390-95. doi:10.1038/ni1177
55. Owens DM, Keyse SM. Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene. 2007 May; 26(22): 3203-13. doi:10.1038/sj.onc.1210412
56. Liu Y, Guyton KZ, Gorospe M, Xu Q, Kokkonen GC, Mock YD, et al. Age-related decline in mitogen-activated protein kinase activity in epidermal growth factor-stimulated rat hepatocytes. J Biol Chem. 1996 Feb; 271(7): 3604-7.
57. Zhen X, Uryu K, Cai G, Johnson GP, Friedman E. Age-associated impairment in brain MAPK signal pathways and the effect of caloric restriction in Fischer 344 rats. J Gerontol A Biol Sci Med Sci. 1999 Dec; 54(12): B539-48.
58. Chung JH, Kang S, Varani J, Lin J, Fisher GJ, Voorhees JJ. Decreased extracellular-signal-regulated kinase and increased stress-activated MAP kinase activities in aged human skin in vivo. J Invest Dermatol. 2000 Aug; 115(2): 177-82. doi:10.1046/j.1523-1747.2000.00009.x
59. Zhu X, Raina AK, Rottkamp CA, Aliev G, Perry G, Boux H, et al. Activation and redistribution of c-jun N-terminal kinase/stress activated protein kinase in degenerating neurons in Alzheimer's disease. J Neurochem. 2001 Jan; 76(2): 435-41.
60. Gupta S, Barrett T, Whitmarsh AJ, Cavanagh J, Sluss HK, Dérijard B, et al. Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J. 1996 Jun; 15(11): 2760-70.
61. Rashtchizadeh N, Karimi P, Dehgan P, Movahed MS. Effects of Selenium in the MAPK Signaling Cascade. J Cardiovasc Thorac Res. 2015; 7(3): 107–12. doi:10.15171/jcvtr.2015.23
62. Toischer K, Rokita AG, Unsöld B, Zhu W, Kararigas G, Sossalla S, et al. Differential cardiac remodeling in preload versus afterload. Circulation. 2010 Sep; 122(10): 993-1003. doi:10.1161/CIRCULATIONAHA.110.943431
63. Nicol RL, Frey N, Pearson G, Cobb M, Richardson J, Olson EN. Activated MEK5 induces serial assembly of sarcomeres and eccentric cardiac hypertrophy. EMBO J. 2001; 20(11): 2757-67. doi:10.1093/emboj/20.11.2757
64. Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science. 2004 Mar; 303(5663): 1483-87. doi:10.1126/science.1094291
65. Wang Y, Huang S, Sah VP, Ross J Jr, Brown JH, Han J, et al. Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J Biol Chem. 1998 Jan; 273(4): 2161-68.
66. Choukroun G, Hajjar R, Kyriakis JM, Bonventre JV, Rosenzweig A, Force T. Role of the stress-activated protein kinases in endothelin-induced cardiomyocyte hypertrophy. J Clin Invest. 1998 Oct; 102(7): 1311-20. doi:10.1172/JCI3512
67. Liao P, Georgakopoulos D, Kovacs A, Zheng M, Lerner D, Pu H, et al. The in vivo role of p38 MAP kinases in cardiac remodeling and restrictive cardiomyopathy. Proc Natl Acad Sci U S A. 2001 Oct; 98(21): 12283-88. doi:10.1073/pnas.211086598
68. Klein G, Schaefer A, Hilfiker-Kleiner D, Oppermann D, Shukla P, Quint A, et al. Increased collagen deposition and diastolic dysfunction but preserved myocardial hypertrophy after pressure overload in mice lacking PKCepsilon. Circ Res. 2005 Apr; 96(7): 748-55. doi:10.1161/01.RES.0000161999.86198.1e
69. Molkentin JD. Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovasc Res. 2004 Aug; 63(3): 467-75. doi:10.1016/j.cardiores.2004.01.021
70. Taniike M, Yamaguchi O, Tsujimoto I, Hikoso S, Takeda T, Nakai A, et al. Apoptosis signal-regulating kinase 1/p38 signaling pathway negatively regulates physiologicalhypertrophy. Circulation. 2008 Jan; 117(4): 545-52. doi:10.1161/CIRCULATIONAHA.107.710434
71. Watanabe K, Ma M, Hirabayashi K, Gurusamy N, Veeraveedu PT, Prakash P, et al. Swimming stress in DN 14-3-3 mice triggers maladaptive cardiac remodeling: role of p38 MAPK. Am J Physiol Heart Circ Physiol. 2007 Mar; 292(3): H1269-77. doi:10.1152/ajpheart.00550.2006
72. Wright KJ, Thomas MM, Betik AC, Belke D, Hepple RT. Exercise training initiated in late middle age attenuates cardiac fibrosis and advanced glycation end-product accumulation in senescent rats. Exp Gerontol. 2014 Feb; 50: 9-18. doi:10.1016/j.exger.2013.11.006
73. Kwak HB, Song W, Lawler JM. Exercise training attenuates age-induced elevation in Bax/Bcl-2 ratio, apoptosis, and remodelingin the rat heart. FASEB J. 2006 Apr; 20(6): 791-3. doi:10.1096/fj.05-5116fje
74. Rossoni LV, Oliveira RA, Caffaro RR, Miana M, Sanz-Rosa D, Koike MK, et al. Cardiac benefits of exercise training in aging spontaneously hypertensive rats. J Hypertens. 2011 Dec; 29(12): 2349-58. doi:10.1097/HJH.0b013e32834d2532
75. Miyachi M, Yazawa H, Furukawa M, Tsuboi K, Ohtake M, Nishizawa T, et al. Exercise training alters left ventricular geometry and attenuates heart failure in dahl salt-sensitive hypertensive rats. Hypertension. 2009 Apr; 53(4): 701-7. doi:10.1161/HYPERTENSIONAHA.108.127290
76. Iemitsu M, Maeda S, Jesmin S, Otsuki T, Kasuya Y, Miyauchi T. Activation pattern of MAPK signaling in the hearts of trained and untrained rats following a singlebout of exercise. J Appl Physiol (1985). 2006 Jul; 101(1): 151-63. doi:10.1152/japplphysiol.00392.2005
77. Eisele JC, Schaefer IM, Randel Nyengaard J, Post H, Liebetanz D, Brüel A, et al. Effect of voluntary exercise on number and volume of cardiomyocytes and their mitochondria in the mouse left ventricle. Basic Res Cardiol. 2008 Jan; 103(1): 12-21. doi:10.1007/s00395-007-0684-x
78. Safdar A, Bourgeois JM, Ogborn DI, Little JP, Hettinga BP, Akhtar M, et al. Endurance exercise rescues progeroid aging and induces systemic mitochondrial rejuvenation in mtDNA mutator mice. Proc Natl Acad Sci U S A. 2011 Mar; 108(10): 4135-40. doi:10.1073/pnas.1019581108
79. Linke A, Adams V, Schulze PC, Erbs S, Gielen S, Fiehn E, et al. Antioxidative effects of exercise training in patients with chronic heart failure: increase in radical scavenger enzyme activity in skeletal muscle. Circulation. 2005 Apr; 111(14): 1763-70. doi:10.1161/01.CIR.0000165503.08661.E5
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA code


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Baghaiee B, Siahkouhian M, Karimi P, Botelho Teixeira A M, Dabagh Nikookheslat S. Effect of exercise on aging cardiac hypertrophy, role of oxidative pressure and some of the mitogen-activated protein kinases. J Gorgan Univ Med Sci. 2018; 20 (2) :17-27
URL: http://goums.ac.ir/journal/article-1-3378-fa.html

بقایی بهروز، سیاه کوهیان معرفت، کریمی پوران، بوتلهو تیکسیرا آنا ماریا، دباغ نیکوخصلت سعید. اثر ورزش بر هیپرتروفی قلبی ناشی از افزایش سن، نقش فشار اکسایشی و برخی از پروتئین کینازهای فعال شده با میتوژن. مجله علمي دانشگاه علوم پزشكي گرگان. 1397; 20 (2) :17-27

URL: http://goums.ac.ir/journal/article-1-3378-fa.html



دوره 20، شماره 2 - ( تابستان 1397 ) برگشت به فهرست نسخه ها
مجله علمی دانشگاه علوم پزشکی گرگان Journal of Gorgan University of Medical Sciences
Persian site map - English site map - Created in 0.06 seconds with 31 queries by YEKTAWEB 3755