[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: معرفي مجله :: آخرين شماره :: آرشيو مقالات :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
آرشیو مقالات::
در باره نشریه::
بانک‌ها و نمایه‌نامه‌ها::
هیئت تحریریه::
اعضای اجرایی::
ثبت نام::
راهنمای نگارش مقاله::
ارسال مقاله::
فرم تعهدنامه::
راهنما کار با وب سایت::
برای داوران::
پرسش‌های متداول::
فرایند ارزیابی و انتشار مقاله::
در باره کارآزمایی بالینی::
اخلاق در نشر::
در باره تخلفات پژوهشی::
رضایت‌آگاهانه‌شرکت‌درمطالعه::
لینکهای مفید::
تسهیلات پایگاه::
تماس با ما::
::
جستجو در پایگاه

جستجوی پیشرفته
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
Google Scholar

Citation Indices from GS

AllSince 2019
Citations66913006
h-index3117
i10-index20773
:: دوره 21، شماره 3 - ( پاییز 1398 ) ::
جلد 21 شماره 3 صفحات 23-13 برگشت به فهرست نسخه ها
اثر فعالیت بدنی بر پیشگیری و درمان آتروسکلروز: تمرکز بر فعالیت ژن‌های ABCG5 و ABCG8
محسن جعفری
استادیار فیزیولوژی ورزشی، گروه علوم ورزشی، واحد شیروان، دانشگاه آزاد اسلامی، شیروان، ایران ، sport87mohsen@gmail.com
چکیده:   (10521 مشاهده)

آتروسکلروز علت اصلی ناتوانی و مرگ و میر در سراسر جهان است. آتروسکلروز که نتیجه رسوب کلسترول در دیواره عروق کرونری است؛ علت اصلی ناتوانی و مرگ و میر در سراسر جهان محسوب می‌شود. انتقال معکوس کلسترول فرایندی است که طی آن کلسترول اضافی از دیواره عروق برداشت می‌شود و بدین ترتیب از خطر آتروسکلروز کاسته می‌شود. پروتئین‌های ناقل کاست متصل به ATP (ABC) مانند ناقل کاست A1 متصل به ATP (ABCA1)، ناقل کاست G1 متصل به ATP (ABCG1)، ناقل کاست G4 متصل به ATP (ABCG4)، ناقل کاست G5 متصل به ATP (ABCG5) و ناقل کاست G8 متصل به ATP (ABCG8) در فرایند انتقال معکوس کلسترول نقش مهمی ایفا می‌کنند. برای جستجوی مقالات بین سال‌های 1990 تا 2018 مرتبط با موضوع مقاله، کلیدواژه‌های تمرین، فعالیت بدنی، انتقال معکوس کلسترول، ناقلان کاست متصل به آدنوزین تری فسفات، ناقل کاست G5 متصل به آدنوزین تری فسفات (ABCG5)، ناقل کاست G8 متصل به آدنوزین تری فسفات (ABCG8)، بیماری‌های قلبی - عروقی و آتروسکلروز در پایگاه‌های اطلاعاتی Google scholar، PubMed، Elsevier، Scopus، پایگاه جهاد دانشگاهی (SID)، science direct و ProQuest مورد استفاده قرار گرفتند. در ابتدا 249 مقاله جستجو شدند که پس از مطالعه دقیق آنها، در نهایت از 84 مقاله در این مقاله مروری استفاده شد. ABCG5 و ABCG8 دو ناقل غشایی کلسترول در هپاتوسایت‌ها و انتروسایت‌ها هستند که موجب دفع کلسترول به درون صفرا و مدفوع می‌شوند. جهش در ژن‌های این دو ماده می‌تواند منجر به افزایش 200 برابری استرول‌های خون شود؛ عارضه‌ای که سیتواسترولمی نام دارد و پیامد آن آتروسکلروز عروق کرونری است. درباره اثر تمرینات ورزشی بر ABCG5 و ABCG8 پژوهش‌های محدود و یا متناقضی انجام شده است. با توجه به اهمیت ABCG5 و ABCG8 در انتقال معکوس کلسترول و پیشگیری و درمان آتروسکلروز عروق کرونری، هدف از این مقاله مروری بررسی اثر فعالیت بدنی بر پیشگیری و درمان آتروسکلروز با تمرکز بر فعالیت ژن‌های ABCG5 و ABCG8 بود. به‌طور کلی با توجه به این که عوامل رونویسی LXR/RXR مسؤول تنظیم ژن‌های مربوط به خروج کلسترول (ABCA1, ABCG1)، انتقال کلسترول (لیپوپروتئین لیپاز، CETP)، تبدیل کلسترول به اسیدهای صفراوی (CYP7A) و متابولیسم و دفع کلسترول کلسترول به صفرا یا مجرای روده‌ای (ABCG5 و ABCG8) هستند؛ لذا تحریک این عوامل و نیز دیگر عوامل رونویسی (PPAR، LRH1، FXR، HNF4α و GATA4) موجب افزایش بیان ژن‌های ABCG5 و ABCG8 می‌شود. اثر ورزش بر این عوامل موضوع جدیدی است که می‌تواند دانش ما را نسبت به راهکارهای پیشگیری و درمان آتروسکلروز افزایش دهد.

واژه‌های کلیدی: آتروسکلروز، انتقال معکوس کلسترول، پروتئین ABCG5، پروتئین ABCG8، فعالیت بدنی
متن کامل [PDF 372 kb]   (9435 دریافت)    
نوع مطالعه: مروري | موضوع مقاله: قلب و عروق
فهرست منابع
1. Jaafari M, Akhgar R, Mohammadhasanzadeh N. [Comparison of effectiveness of Karate, Taekwondo and Judo training on physical fitness and cardiovascular risk factors in students of Imam-Hossein University]. J Mil Med. 2014; 16(2): 83-91. [Article in Persian]
2. Jafari M, Pouryamehr E, Fathi M. The effect of eight weeks high intensity interval training (HIIT) on E-selectin and P-selectin in young obese females. Int J Sport Stud Hlth. 2018; 1(1): e64336. doi: 10.5812/intjssh.64336
3. Bizheh N, Ebrahimi Atri A, Jaafari M. [The effect of three months aerobic exercise on levels of hsCRP, homocysteine, serum lipids and aerobic power in healthy and inactive middle aged men]. Daneshvar Medicine. 2012; 19(98): 43-50. [Article in Persian]
4. Bizheh N, Jaafari M. The Effect of a Single Bout Circuit Resistance Exercise on Homocysteine, hs-CRP and Fibrinogen in Sedentary Middle Aged Men. Iran J Basic Med Sci. 2011 Nov; 14(6): 568-73.
5. Bizheh N, Jaafari M. [Effects of regular aerobic exercise on cardiorespiratory fitness and levels of fibrinogen, fibrin D-dimer and uric acid in healthy and inactive middle aged men]. J Shahrekord Univ Med Sci. 2012; 14(3): 20-29. [Article in Persian]
6. Pouriamehr E, Jafari M. [The effect of eight weeks high intensity interval training (HIT) on some adhesive molecules young female non-athletes]. Nafas. 2017, 3(4): 36-44. [Article in Persian]
7. Chomistek AK, Chiuve SE, Eliassen AH, Mukamal KJ, Willett WC, Rimm EB. Healthy lifestyle in the primordial prevention of cardiovascular disease among young women. J Am Coll Cardiol. 2015 Jan; 65(1): 43-51. doi: 10.1016/j.jacc.2014.10.024
8. Hanukoglu I. Steroidogenic enzymes: structure, function, and role in regulation of steroid hormone biosynthesis. J Steroid Biochem Mol Biol. 1992 Dec; 43(8): 779-804. doi: 10.1016/0960-0760(92)90307-5
9. Ohashi R, Mu H, Wang X, Yao Q, Chen C. Reverse cholesterol transport and cholesterol efflux in atherosclerosis. QJM. 2005 Dec; 98(12): 845-56. doi: 10.1093/qjmed/hci136
10. Ory DS. Nuclear receptor signaling in the control of cholesterol homeostasis: have the orphans found a home? Circ Res. 2004 Oct; 95(7): 660-70. doi: 10.1161/01.RES.0000143422.83209.be
11. Borggreve SE, De Vries R, Dullaart RP. Alterations in high-density lipoprotein metabolism and reverse cholesterol transport in insulin resistance and type 2 diabetes mellitus: role of lipolytic enzymes, lecithin:cholesterol acyltransferase and lipid transfer proteins. Eur J Clin Invest. 2003 Dec; 33(12): 1051-69.
12. Fisher EA, Feig JE, Hewing B, Hazen SL, Smith JD. High-density lipoprotein function, dysfunction, and reverse cholesterol transport. Arterioscler Thromb Vasc Biol. 2012 Dec; 32(12): 2813-20. doi: 10.1161/ATVBAHA.112.300133
13. Joseph P, Leong D, McKee M, Anand SS, Schwalm JD, Teo K, et al. Reducing the Global Burden of Cardiovascular Disease, Part 1: The Epidemiology and Risk Factors. Circ Res. 2017 Sep; 121(6): 677-94. doi: 10.1161/CIRCRESAHA.117.308903
14. Bäck M, Cider A, Gillström J, Herlitz J. Physical activity in relation to cardiac risk markers in secondary prevention of coronary artery disease. Int J Cardiol. 2013 Sep; 168(1): 478-83. doi: 10.1016/j.ijcard.2012.09.117
15. Kubilius R, Jasiukevičienė L, Grižas V, Kubilienė L, Jakubsevičienė E, Vasiliauskas D. The impact of complex cardiac rehabilitation on manifestation of risk factors in patients with coronary heart disease. Medicina (Kaunas). 2012; 48(3): 166-73.
16. Mann S, Beedie C, Jimenez A. Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: review, synthesis and recommendations. Sports Med. 2014 Feb; 44(2): 211-21. doi: 10.1007/s40279-013-0110-5
17. Fitzgerald ML, Mujawar Z, Tamehiro N. ABC transporters, atherosclerosis and inflammation. Atherosclerosis. 2010 Aug; 211(2): 361-70. doi: 10.1016/j.atherosclerosis.2010.01.011
18. Glass CK, Witztum JL. Atherosclerosis. the road ahead. Cell. 2001 Feb; 104(4): 503-16.
19. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005 Apr; 352(16): 1685-95. doi: 10.1056/NEJMra043430
20. Woodward OM, Köttgen A, Köttgen M. ABCG transporters and disease. FEBS J. 2011 Sep; 278(18): 3215-25. doi: 10.1111/j.1742-4658.2011.08171.x
21. Tarr PT, Tarling EJ, Bojanic DD, Edwards PA, Baldán A. Emerging new paradigms for ABCG transporters. Biochim Biophys Acta. 2009 Jul; 1791(7): 584-93. doi: 10.1016/j.bbalip.2009.01.007
22. Su K, Sabeva NS, Liu J, Wang Y, Bhatnagar S, van der Westhuyzen DR, et al. The ABCG5 ABCG8 sterol transporter opposes the development of fatty liver disease and loss of glycemic control independently of phytosterol accumulation. J Biol Chem. 2012 Aug; 287(34): 28564-75. doi: 10.1074/jbc.M112.360081
23. Horenstein RB, Mitchell BD, Post WS, Lütjohann D, von Bergmann K, Ryan KA, et al. The ABCG8 G574R variant, serum plant sterol levels, and cardiovascular disease risk in the Old Order Amish. Arterioscler Thromb Vasc Biol. 2013 Feb; 33(2): 413-19. doi: 10.1161/ATVBAHA.112.245480
24. Wang J, Grishin N, Kinch L, Cohen JC, Hobbs HH, Xie XS. Sequences in the nonconsensus nucleotide-binding domain of ABCG5/ABCG8 required for sterol transport. J Biol Chem. 2011 Mar; 286(9): 7308-14. doi: 10.1074/jbc.M110.210880
25. Brown JM, Yu L. Opposing Gatekeepers of Apical Sterol Transport: Niemann-Pick C1-Like 1 (NPC1L1) and ATP-Binding Cassette Transporters G5 and G8 (ABCG5/ABCG8). Immunol Endocr Metab Agents Med Chem. 2009 Mar; 9(1): 18-29. doi: 10.2174/187152209788009797
26. Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev. 2009 Jan; 89(1): 147-91. doi: 10.1152/physrev.00010.2008
27. Wei KK, Zhang LR, Zhang Y, Hu XJ. Interactions between CYP7A1 A-204C and ABCG8 C1199A polymorphisms on lipid lowering with atorvastatin. J Clin Pharm Ther. 2011 Dec; 36(6): 725-33. doi: 10.1111/j.1365-2710.2010.01227.x
28. Li Q, Yin RX, Wei XL, Yan TT, Aung LH, Wu DF, et al. ATP-binding cassette transporter G5 and G8 polymorphisms and several environmental factors with serum lipid levels. PLoS One. 2012; 7(5): e37972. doi: 10.1371/journal.pone.0037972
29. de Vogel-van den Bosch HM, de Wit NJ, Hooiveld GJ, Vermeulen H, van der Veen JN, Houten SM, et al. A cholesterol-free, high-fat diet suppresses gene expression of cholesterol transporters in murine small intestine. Am J Physiol Gastrointest Liver Physiol. 2008 May; 294(5): G1171-80. doi: 10.1152/ajpgi.00360.2007
30. Baldán A, Bojanic DD, Edwards PA. The ABCs of sterol transport. J Lipid Res. 2009 Apr; 50 Suppl: S80-5. doi: 10.1194/jlr.R800044-JLR200
31. Tang W, Ma Y, Jia L, Ioannou YA, Davies JP, Yu L. Genetic inactivation of NPC1L1 protects against sitosterolemia in mice lacking ABCG5/ABCG8. J Lipid Res. 2009 Feb; 50(2): 293-300. doi: 10.1194/jlr.M800439-JLR200
32. Kerr ID, Haider AJ, Gelissen IC. The ABCG family of membrane-associated transporters: you don't have to be big to be mighty. Br J Pharmacol. 2011 Dec; 164(7): 1767-79. doi: 10.1111/j.1476-5381.2010.01177.x
33. Tarling EJ, Edwards PA. ATP binding cassette transporter G1 (ABCG1) is an intracellular sterol transporter. Proc Natl Acad Sci U S A. 2011 Dec; 108(49): 19719-24. doi: 10.1073/pnas.1113021108
34. Poirier J, Cockell KA, Scoggan KA, Ratnayake WM, Rocheleau H, Gruber H, et al. High-dose supplemental selenite to male Syrian hamsters fed hypercholesterolaemic diets alters Ldlr, Abcg8 and Npc1l1 mRNA expression and lowers plasma cholesterol concentrations. Br J Nutr. 2012 Jul; 108(2): 257-66. doi: 10.1017/S0007114511005587
35. Li Q, Wei XL, Yin RX. Association of ATP binding cassette transporter G8 rs4148217 SNP and serum lipid levels in Mulao and Han nationalities. Lipids Health Dis. 2012 May; 11: 46. doi: 10.1186/1476-511X-11-46.
36. Wang N, Yvan-Charvet L, Lütjohann D, Mulder M, Vanmierlo T, Kim TW, et al. ATP-binding cassette transporters G1 and G4 mediate cholesterol and desmosterol efflux to HDL and regulate sterol accumulation in the brain. FASEB J. 2008 Apr; 22(4): 1073-82. doi: 10.1096/fj.07-9944com
37. Yoon JH, Kuver R, Choi HS. ABCG8 D19H polymorphism: a basis for the genetic prediction of cholesterol gallstone disease. J Gastroenterol Hepatol. 2010 Nov; 25(11): 1713-14. doi: 10.1111/j.1440-1746.2010.06484.x
38. Méndez-González J, Julve J, Rotllan N, Llaverias G, Blanco-Vaca F, Escolà-Gil JC. ATP-binding cassette G5/G8 deficiency causes hypertriglyceridemia by affecting multiple metabolic pathways. Biochim Biophys Acta. 2011 Dec; 1811(12): 1186-93. doi: 10.1016/j.bbalip.2011.07.019
39. Feldmann R. Genome-wide analysis of LXR-alpha regulated transcriptional networks in human atherosclerotic foam cell development. Freie Universitat Berlin. Thesis. 2013.
40. Voloshyna I, Reiss AB. The ABC transporters in lipid flux and atherosclerosis. Prog Lipid Res. 2011 Jul; 50(3): 213-24. doi: 10.1016/j.plipres.2011.02.001
41. Silbernagel G, Chapman MJ, Genser B, Kleber ME, Fauler G, Scharnagl H, et al. High intestinal cholesterol absorption is associated with cardiovascular disease and risk alleles in ABCG8 and ABO: evidence from the LURIC and YFS cohorts and from a meta-analysis. J Am Coll Cardiol. 2013 Jul; 62(4): 291-99. doi: 10.1016/j.jacc.2013.01.100
42. Szanto A, Roszer T. Nuclear receptors in macrophages: a link between metabolism and inflammation. FEBS Lett. 2008 Jan; 582(1): 106-16. doi: 10.1016/j.febslet.2007.11.020
43. Abumrad NA, Davidson NO. Role of the gut in lipid homeostasis. Physiol Rev. 2012 Jul; 92(3): 1061-85. doi: 10.1152/physrev.00019.2011
44. Kellner-Weibel G, de la Llera-Moya M. Update on HDL receptors and cellular cholesterol transport. Curr Atheroscler Rep. 2011 Jun; 13(3): 233-41. doi: 10.1007/s11883-011-0169-0
45. van Straten EM, Huijkman NC, Baller JF, Kuipers F, Plösch T. Pharmacological activation of LXR in utero directly influences ABC transporter expression and function in mice but does not affect adult cholesterol metabolism. Am J Physiol Endocrinol Metab. 2008 Dec; 295(6): E1341-48. doi: 10.1152/ajpendo.90597.2008
46. Back SS, Kim J, Choi D, Lee ES, Choi SY, Han K. Cooperative transcriptional activation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 genes by nuclear receptors including Liver-X-Receptor. BMB Rep. 2013 Jun; 46(6): 322-27. doi: 10.5483/bmbrep.2013.46.6.246
47. Sabeva NS, Liu J, Graf GA. The ABCG5 ABCG8 sterol transporter and phytosterols: implications for cardiometabolic disease. Curr Opin Endocrinol Diabetes Obes. 2009 Apr; 16(2): 172-77.
48. Srivastava A, Srivastava A, Srivastava K, Choudhuri G, Mittal B. Role of ABCG8 D19H (rs11887534) variant in gallstone susceptibility in northern India. J Gastroenterol Hepatol. 2010 Nov; 25(11): 1758-62. doi: 10.1111/j.1440-1746.2010.06349.x
49. Stender S, Frikke-Schmidt R, Nordestgaard BG, Tybjaerg-Hansen A. Sterol transporter adenosine triphosphate-binding cassette transporter G8, gallstones, and biliary cancer in 62,000 individuals from the general population. Hepatology. 2011 Feb; 53(2): 640-48. doi: 10.1002/hep.24046
50. Renner O, Lütjohann D, Richter D, Strohmeyer A, Schimmel S, Müller O, et al. Role of the ABCG8 19H risk allele in cholesterol absorption and gallstone disease. BMC Gastroenterol. 2013 Feb; 13: 30. doi: 10.1186/1471-230X-13-30
51. Chen ZC, Shin SJ, Kuo KK, Lin KD, Yu ML, Hsiao PJ. Significant association of ABCG8:D19H gene polymorphism with hypercholesterolemia and insulin resistance. J Hum Genet. 2008; 53(8): 757-63. doi: 10.1007/s10038-008-0310-2
52. Li GS, Liu XH, Zhu H, Huang L, Liu YL, Ma CM. Skeletal muscle insulin resistance in hamsters with diabetes developed from obesity is involved in abnormal skeletal muscle LXR, PPAR and SREBP expression. Exp Ther Med. 2016; 11(6): 2259-69. doi: 10.3892/etm.2016.3209
53. Sabeva NS, Rouse EJ, Graf GA. Defects in the leptin axis reduce abundance of the ABCG5-ABCG8 sterol transporter in liver. J Biol Chem. 2007 Aug; 282(31): 22397-405. doi: 10.1074/jbc.M702236200
54. Katsika D, Magnusson P, Krawczyk M, Grunhage F, Lichtenstein P, Einarsson C, et al. Gallstone disease in Swedish twins: risk is associated with ABCG8D19H genotype. Journal ofInternal Medicine. 2010; 268: 279-85. doi: 10.1111/j.1365-2796.2010.02249.x
55. Jiang ZY, Parini P, Eggertsen G, Davis MA, Hu H, Suo GJ, et al. Increased expression of LXR alpha, ABCG5, ABCG8, and SR-BI in the liver from normolipidemic, nonobese Chinese gallstone patients. J Lipid Res. 2008 Feb; 49(2): 464-72. doi: 10.1194/jlr.M700295-JLR200
56. Jiang ZY, Cai Q, Chen EZ. Association of three common single nucleotide polymorphisms of ATP binding cassette G8 gene with gallstone disease: a meta-analysis. PLoS One. 2014 Jan; 9(1): e87200. doi: 10.1371/journal.pone.0087200
57. Meissner M, Nijstad N, Kuipers F, Tietge UJ. Voluntary exercise increases cholesterol efflux but not macrophage reverse cholesterol transport in vivo in mice. Nutr Metab (Lond). 2010 Jul; 7: 54. doi: 10.1186/1743-7075-7-54
58. Ghanbari-Niaki A, Rahmati-Ahmadabad S, Zare-Kookandeh N. ABCG8 Gene Responses to 8 Weeks Treadmill Running With or Without Pistachia atlantica (Baneh) Extraction in Female Rats. Int J Endocrinol Metab. 2012; 10(4): 604-10. doi: 10.5812/ijem.5305
59. Côté I, Ngo Sock ET, Lévy É, Lavoie JM. An atherogenic diet decreases liver FXR gene expression and causes severe hepatic steatosis and hepatic cholesterol accumulation: effect of endurance training. Eur J Nutr. 2013 Aug; 52(5): 1523-32. doi: 10.1007/s00394-012-0459-5
60. Ngo Sock ET, Farahnak Z, Lavoie JM. Exercise training decreases gene expression of endo- and xeno-sensors in rat small intestine. Appl Physiol Nutr Metab. 2014 Oct; 39(10): 1098-103. doi: 10.1139/apnm-2013-0573
61. Ramezani Z, Hejazi S M, Rashidlamir A. The Effect of Eight Weeks Aerobic Exercise on the Atherogenic Ratio and ABCG8 Gene Expression in PBMC Globules of Overweight Women. Iran J Diabetes Obes. 2017; 9(3): 95-100.
62. Khajei R, Haghighi AH, Hamedinia MR, Rashid Lamir A. [Effects of Eight Week Aerobic Training on Monocytes ABCG5 Gene Expression in Middle-Aged Men after Heart Bypass Surgery]. J Sabzevar Univ Med Sci. 2017; 24(1): 79-88. [Article in Persian]
63. Nishimaki-Mogami T, Tamehiro N, Sato Y, Okuhira K, Sai K, Kagechika H, et al. The RXR agonists PA024 and HX630 have different abilities to activate LXR/RXR and to induce ABCA1 expression in macrophage cell lines. Biochem Pharmacol. 2008 Oct; 76(8): 1006-13. doi: 10.1016/j.bcp.2008.08.005
64. Coy DJ, Wooton-Kee CR, Yan B, Sabeva N, Su K, Graf G, et al. ABCG5/ABCG8-independent biliary cholesterol excretion in lactating rats. Am J Physiol Gastrointest Liver Physiol. 2010 Jul; 299(1): G228-35. doi: 10.1152/ajpgi.00502.2009
65. Koeijvoets KC, van der Net JB, Dallinga-Thie GM, Steyerberg EW, Mensink RP, Kastelein JJ, et al. ABCG8 gene polymorphisms, plasma cholesterol concentrations, and risk of cardiovascular disease in familial hypercholesterolemia. Atherosclerosis. 2009 Jun; 204(2): 453-58. doi: 10.1016/j.atherosclerosis.2008.09.018
66. Desvergne B, Michalik L, Wahli W. Transcriptional regulation of metabolism. Physiol Rev. 2006 Apr; 86(2): 465-514. doi: 10.1152/physrev.00025.2005
67. Ito K, Brouwer KL. LXR/FXR agonist alters transporter expression in sandwich-cultured human hepatocytes; proteomics-driven PBPK modeling implicates a drug–drug interaction with metformin. Drug Metabolism and Pharmacokinetics. 2018 Jan; 33(1): S88. https://doi.org/10.1016/j.dmpk.2017.11.287
68. DiBlasio-Smith EA, Arai M, Quinet EM, Evans MJ, Kornaga T, Basso MD, et al. Discovery and implementation of transcriptional biomarkers of synthetic LXR agonists in peripheral blood cells. J Transl Med. 2008 Oct; 6: 59. doi: 10.1186/1479-5876-6-59
69. Lee J, Scheri RC, Curtis LR. Chlordecone altered hepatic disposition of [14C]cholesterol and plasma cholesterol distribution but not SR-BI or ABCG8 proteins in livers of C57BL/6 mice. Toxicol Appl Pharmacol. 2008 Jun; 229(3): 265-72. doi: 10.1016/j.taap.2008.01.023
70. Sabeva NS. Regulation of abcg5 and abcg8 sterol transporters in biliary cholesterol elimination, reverse cholesterol trasport and dyslipidemia. University of Kentucky. Dissertation. 2011.
71. Yamazaki Y, Hashizume T, Morioka H, Sadamitsu S, Ikari A, Miwa M, et al. Diet-induced lipid accumulation in liver enhances ATP-binding cassette transporter g5/g8 expression in bile canaliculi. Drug Metab Pharmacokinet. 2011; 26(5): 442-50.
72. Mohammadi A, Mirzaei F, Moradi MN, Jamshidi M, Yari R, Ghiasvand T, et al. Effect of flaxseed on Serum Lipid Profile and expression of NPC1L1, ABCG5 and ABCG8 genes in the intestine of diabetic rat. Avi J Med Biochem. 2013; 1(1): 1-6.
73. Nagy L, Szanto A, Szatmari I, Széles L. Nuclear hormone receptors enable macrophages and dendritic cells to sense their lipid environment and shape their immune response. Physiol Rev. 2012 Apr; 92(2): 739-89. doi: 10.1152/physrev.00004.2011
74. Dushkin MI, Khoshchenko OM, Chasovsky MA, Pivovarova EN. The content of PPAR, LXR, and RXR and the PPAR DNA-binding activity in macrophages over the course of inflammation in mice. Bull Exp Biol Med. 2009 Mar; 147(3): 345-48.
75. Liang B, Wang X, Yan F, Bian YF, Liu M, Bai R, et al. Angiotensin-(1-7) upregulates (ATP-binding cassette transporter A1) ABCA1 expression through cyclic AMP signaling pathway in RAW 264.7 macrophages. Eur Rev Med Pharmacol Sci. 2014; 18(7): 985-91.
76. Khovidhunkit W, Kim MS, Memon RA, Shigenaga JK, Moser AH, Feingold KR, et al. Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host. J Lipid Res. 2004 Jul; 45(7): 1169-96. doi: 10.1194/jlr.R300019-JLR200
77. Chawla A, Boisvert WA, Lee CH, Laffitte BA, Barak Y, Joseph SB, et al. A PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell. 2001 Jan; 7(1): 161-71.
78. Shchelkunova TA, Morozov IA, Rubtsov PM, Bobryshev YV, Sobenin IA, Orekhov AN, et al. Lipid regulators during atherogenesis: expression of LXR, PPAR, and SREBP mRNA in the human aorta. PloS One. 2013; 8(5): e63374. doi: 10.1371/journal.pone.0063374
79. Wei-guo Z, Hui Y, Shan L, Yun Z, Wen-cheng N, Fu-lin Y, et al. PPAR-gamma agonist inhibits Ang II-induced activation of dendritic cells via the MAPK and NF-kappaB pathways. Immunol Cell Biol. 2010 Mar-Apr; 88(3):305-12. doi: 10.1038/icb.2009.100
80. Butcher LR, Thomas A, Backx K, Roberts A, Webb R, Morris K. Low-intensity exercise exerts beneficial effects on plasma lipids via PPARgamma. Med Sci Sports Exerc. 2008 Jul; 40(7): 1263-70. doi: 10.1249/MSS.0b013e31816c091d
81. Freeman LA, Kennedy A, Wu J, Bark S, Remaley AT, Santamarina-Fojo S, et al. The orphan nuclear receptor LRH-1 activates the ABCG5/ABCG8 intergenic promoter. J Lipid Res. 2004 Jul; 45(7): 1197-206. doi: 10.1194/jlr.C400002-JLR200
82. Feingold KR, Grunfeld C. The acute phase response inhibits reverse cholesterol transport. J Lipid Res. 2010 Apr; 51(4): 682-84. doi: 10.1194/jlr.E005454
83. Malik P, Berisha SZ, Santore J, Agatisa-Boyle C, Brubaker G, Smith JD. Zymosan-mediated inflammation impairs in vivo reverse cholesterol transport. J Lipid Res. 2011 May; 52(5): 951-57. doi: 10.1194/jlr.M011122
84. Hao XR, Cao DL, Hu YW, Li XX, Liu XH, Xiao J, et al. IFN-gamma down-regulates ABCA1 expression by inhibiting LXRalpha in a JAK/STAT signaling pathway-dependent manner. Atherosclerosis. 2009 Apr; 203(2): 417-28. doi: 10.1016/j.atherosclerosis.2008.07.029
ارسال پیام به نویسنده مسئول


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jafari M. Effect of physical activity on prevention and treatment of atherosclerosis: focus on activity of ABCG5 and ABCG8 genes. J Gorgan Univ Med Sci 2019; 21 (3) :13-23
URL: http://goums.ac.ir/journal/article-1-3338-fa.html

جعفری محسن. اثر فعالیت بدنی بر پیشگیری و درمان آتروسکلروز: تمرکز بر فعالیت ژن‌های ABCG5 و ABCG8. مجله علمي دانشگاه علوم پزشكي گرگان. 1398; 21 (3) :13-23

URL: http://goums.ac.ir/journal/article-1-3338-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 21، شماره 3 - ( پاییز 1398 ) برگشت به فهرست نسخه ها
مجله دانشگاه علوم پزشکی گرگان Journal of Gorgan University of Medical Sciences
Persian site map - English site map - Created in 0.05 seconds with 38 queries by YEKTAWEB 4645