[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: معرفي مجله :: آخرين شماره :: آرشيو مقالات :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
آرشیو مقالات::
در باره نشریه::
بانک‌ها و نمایه‌نامه‌ها::
هیئت تحریریه::
اعضای اجرایی::
ثبت نام::
راهنمای نگارش مقاله::
ارسال مقاله::
فرم تعهدنامه::
راهنما کار با وب سایت::
برای داوران::
پرسش‌های متداول::
فرایند ارزیابی و انتشار مقاله::
در باره کارآزمایی بالینی::
اخلاق در نشر::
در باره تخلفات پژوهشی::
لینکهای مفید::
تسهیلات پایگاه::
تماس با ما::
::
جستجو در پایگاه

جستجوی پیشرفته
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
Google Scholar

Citation Indices from GS

AllSince 2020
Citations72672872
h-index3217
i10-index22268
:: دوره 21، شماره 1 - ( بهار 1398 ) ::
جلد 21 شماره 1 صفحات 122-113 برگشت به فهرست نسخه ها
حذف فنل از محلول‌های آبی با استفاده از پرسولفات فعال شده با آهن دوظرفیتی در حضور امواج فرابنفش
زهرا شریفی1 ، قربان عسگری2 ، عبدالمطلب صیدمحمدی* 3
1- کارشناسی ارشد مهندسی بهداشت محیط، گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی همدان، همدان، ایران
2- دانشیار گروه مهندسی بهداشت محیط، مرکز تحقیقات عوامل اجتماعی موثر بر سلامت، گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی همدان، همدان، ایران
3- دانشیار گروه مهندسی بهداشت محیط، مرکز تحقیقات عوامل اجتماعی موثر بر سلامت، گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی همدان، همدان، ایران ، sidmohammadi@umsha.ac.ir
چکیده:   (10761 مشاهده)

زمینه و هدف: ترکیبات آلی حلقوی از جمله آلاینده‌های رایجی هستند که در خروجی تصفیه‌خانه فاضلاب بسیاری از صنایع در غلظت‌های پایین تا صدها میلی‌گرم در لیتر مشاهده شده‌اند. فنل به مقدار زیاد در صنایع مصرف داشته و از طریق پساب این صنایع وارد محیط زیست می‌شود. این مطالعه به منظور حذف فنل از محلول‌های آبی با استفاده از پرسولفات فعال شده با آهن دوظرفیتی در حضور امواج فرابنفش انجام شد.

روش بررسی: این مطالعه توصیفی فتوکاتالیستی در مقیاس آزمایشگاهی و در سیستم ناپیوسته با استفاده از یک واحد راکتور با حجم 2.5 L مجهز به لامپ جیوه‌ای کم فشار 55 واتی در طول موج 254 نانومترانجام شد. تاثیر پارامترهای بهره‌برداری نظیر pH محلول ( 3 تا 10)، غلظت پرسولفات (10 تا 75 میلی‌مول بر لیتر)، غلظت آهن (5 تا 30 میلی‌مول بر لیتر)، غلظت اولیه فنل (10 تا 100 میلی‌گرم بر لیتر) بر عملکرد فرایند مورد بررسی قرار گرفت. غلظت فنل با استفاده از دستگاه اسپکتروفتومتر در طول موج 500 نانومتر اندازه‌گیری شد.

یافته‌ها: با افزایش pH محلول از 3 تا 10 حذف فنل کاهش یافت. بیشترین میزان حذف فنل در زمان 45 دقیقه در pH 3 برابر با 82 درصد بود. همچنین کارایی فرایند در حذف فنل به غلظت اولیه پرسولفات و آهن بستگی داشت. نتایج بیانگر آن بود که تجزیه فنل از معادلات درجه اول کاذب تبعیت نمود. در شرایط بهینه بهره‌برداری میزان کاهش TOC در زمان 45 دقیقه 61 درصد تعیین شد.

نتیجه‌گیری: فرایند توام پرسولفات / آهن دوظرفیتی / اشعه فرابنفش توانایی حذف مقادیر مختلف فنل را دارا است. لذا امکان استفاده از این فرایند در حذف فنل به تنهایی یا به عنوان پیش تصفیه در تصفیه فاضلاب صنایع وجود دارد.

واژه‌های کلیدی: امواج فرابنفش، آهن دوظرفیتی، فعال سازی پرسولفات، فنل، فاضلاب
متن کامل [PDF 369 kb]   (15875 دریافت)    
نوع مطالعه: تحقيقي | موضوع مقاله: بهداشت محيط
* نشانی نویسنده مسئول: همدان، دانشگاه علوم پزشکی همدان، دانشکده بهداشت، گروه مهندسی بهداشت محیط، تلفن 38380090-081
فهرست منابع
1. Bahrami Asl F, Kermani M, Farzadkia M, Esrafili A, Salahshour Arian S, mokammel A et al. Removal of Metronidazole from Aqueous solution using ozonation process. J Mazandaran Univ Med Sci. 2015; 24(121): 131-40. [Article in Persian]
2. Ao X, Liu W. Degradation of sulfamethoxazole by medium pressure UV and oxidants: peroxymonosulfate, persulfate, and hydrogen peroxide. Chemical Engineering Journal. 2017 Apr; 313: 629-37. https://doi.org/10.1016/j.cej.2016.12.089
3. Maleki A, Khadem Erfan MB, Seyed Mohammadi AM, Ebrahimi R. Application of commercial powdered activated carbon for adsorption of carbolic acid in aqueous solution. Pak J Biol Sci. 2007; 10(14): 2348-52. doi: 10.3923/pjbs.2007.2348.2352
4. Busca G, Berardinelli S, Resini C, Arrighi L. Technologies for the removal of phenol from fluid streams: a short review of recent developments. J Hazard Mater. 2008 Dec; 160(2-3): 265-88. doi: 10.1016/j.jhazmat.2008.03.045
5. Ayisha Sidiqua M, Kanmani S Degradation of phenolic wastewaters by UV-LED/H2O2/Nano-TiO2. Int J Eng Technol Manag Appl Sci. 2015; 3(8): 73-80.
6. National Primary Drinking Water Regulations Complete. EPA 816-F-09-004. MAY 2009.
7. Poulopoulos SG, Korologos CA, Boulamanti A, Philippopoulos CJ. Treatment of 2-chlorophenol aqueous solutions by wet oxidation. Water Res. 2007 Mar; 41(6): 1263-68. doi: 10.1016/j.watres.2006.12.038
8. Seid-mohammadi A, Asgari G, PoormohammadiA, Ahmadian M, Rezaeivahidian H. Removal of phenol at high concentrations using UV/Persulfate from saline Wastewater. Desalination and Water Treatment. 2016; 57(42): 19988-95. https://doi.org/10.1080/19443994.2015.1102770
9. Roostaei N, Tezel FH. Removal of phenol from aqueous solutions by adsorption. J Environ Manage. 2004; 70(2): 157-64.
10. Asgari G, Seidmohammadi A, Chavoshani A. Pentachlorophenol removal from aqueous solutions by microwave/persulfate and microwave/H2O2: A comparative kinetic study. J Environ Health Sci Eng. 2014; 12: 94. doi: 10.1186/2052-336X-12-94
11. Mustafa YA, Shihab AH. Removal of 4-chlorophenol from wastewater using a pilot-scale advanced oxidation process. Desalination and Water Treatment. 2013; 51(34-36): 6663-75. https://doi.org/10.1080/19443994.2013.765362
12. Seidmohammadi A, Asgari G, Torabi L. [Removal of Metronidazole using ozone activated persulfate from aqua solutions in presence of ultrasound]. J Mazandaran Univ Med Sci. 2016; 26(143): 160-73. [Article in Persian]
13. Wang Y, Zhang H, Chen L, Wang Sh, Zhang D. Ozonation combined with ultrasound for the degradation of tetracycline in a rectangular air-lift reactor. Sep Purif Technol. 2012; 84: 138-46. https://doi.org/10.1016/j.seppur.2011.06.035
14. Lin YT, Liang C, Chen JH. Feasibility study of ultraviolet activated persulfate oxidation of phenol. Chemosphere. 2011 Feb; 82(8): 1168-72. doi: 10.1016/j.chemosphere.2010.12.027
15. Liu CS, Shih K, Sun CX, Wang F. Oxidative degradation of propachlor by ferrous and copper ion activated persulfate. Sci Total Environ. 2012 Feb; 416: 507-12. doi: 10.1016/j.scitotenv.2011.12.004
16. Rao YF, Qu L, Yang H, Chu W. Degradation of carbamazepine by Fe(II)-activated persulfate process. J Hazard Mater. 2014 Mar; 268: 23-32. doi: 10.1016/j.jhazmat.2014.01.010
17. Naim S, Ghauch A. Ranitidine abatement in chemically activated persulfate systems: Assessment of industrial iron waste for sustainable applications. Chemical Engineering Journal. 2016 Mar; 288: 276-88. https://doi.org/10.1016/j.cej.2015.11.101
18. Kang J, Duan X, Zhou L, Sun H, Tade MO, Wang Sh. Carbocatalytic activation of persulfate for removal of antibiotics in water solutions. Chemical Engineering Journal. 2016 Mar; 288: 399-405. https://doi.org/10.1016/j.cej.2015.12.040
19. Zazo JA, Pliego G, García-Muñoz P, Casas JA, Rodriguez JJ. UV-LED assisted catalytic wet peroxide oxidation with a Fe (II)-Fe (III)/activated carbon catalyst. Applied Catalysis B: Environmental. 2016 Sep; 192: 350-56. https://doi.org/10.1016/ j.apcatb.2016.04.010
20. Weng C-H, Ding F, Lin Y-T, Liu N. Effective decolorization of polyazo direct dye Sirius Red F3B using persulfate activated with Fe0 aggregate. Sep Purif Technol. 2015 Jun; 147: 147-55. https://doi.org/10.1016/j.seppur.2015.03.062
21. Wei X, Gao N, Li C, Deng Y, Deng S, Li L. Zero-Valent iron activation of persulfate (PS) for oxidation of bentazon in water. Chemical Engineering Journal. 2016 Feb; 285: 660-70. https://doi.org/10.1016/j.cej.2015.08.120
22. Seidmohammadi A, Amiri R, Faradmal J, Lili M, Asgari Gh. UVA-LED assisted persulfate/nZVI and hydrogen peroxide/nZVI for degrading 4-chlorophenol in aqueous solutions. Korean Journal of Chemical Engineering. 2018; 35(3): 694-701. doi: 10.1007/s11814-017-0317-5
23. Hussain I, Zhang Y, Huang S, Du X . Degradation of p-chloroaniline by persulfate activated with zero-valent iron. Chemical Engineering Journal. 2012 Sep; 203: 269-76. https://doi.org/10.1016/j.cej.2012.06.120
24. Zhou L, Zheng W, Ji Y, Zhang J, Zeng C, Zhang Y, et al. Ferrous-activated persulfate oxidation of arsenic(III) and diuron in aquatic system. J Hazard Mater. 2013 Dec; 263 Pt 2: 422-30. doi: 10.1016/j.jhazmat.2013.09.056
25. Rodriguez S, Vasquez L, Costa D, Romero A, Santos A. Oxidation of orange G by persulfate activated by Fe(II), Fe(III) and zero valent iron (ZVI). Chemosphere. 2014 Apr; 101: 86-92. doi: 10.1016/j.chemosphere.2013.12.037
26. Nie M, Yan C, Li M, Wang X, Bi W, Dong W. Degradation of chloramphenicol by persulfate activated by Fe2+ and zerovalent iron. Chemical Engineering Journal. 2015 Nov; 279: 507-15. https://doi.org/10.1016/j.cej.2015.05.055
27. APHA. Standard Methods for the Examination of Water and Wastewater. 21st Edition. American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC. 2005.
28. Wang CW, Liang C. Oxidative degradation of TMAH solution with UV persulfate activation. Chemical Engineering Journal. 2014 Oct; 254: 472-78. https://doi.org/10.1016/j.cej.2014.05.116
29. Luo C, Jiang J, Ma J, Pang S, Liu Y, Song Y, Guan C, et al. Oxidation of the odorous compound 2,4,6-trichloroanisole by UV activated persulfate: Kinetics, products, and pathways. Water Res. 2016 Jun; 96: 12-21. doi: 10.1016/j.watres.2016.03.039
30. Wang S, Zhou N. Removal of carbamazepine from aqueous solution using sono-activated persulfate process. Ultrason Sonochem. 2016 Mar; 29: 156-62. doi: 10.1016/j.ultsonch.2015.09.008
31. Darvishi Cheshmeh Soltani R, Safari M, Mashayekhi M. Sonocatalyzed decolorization of synthetic textile wastewater using sonochemically synthesized MgO nanostructures. Ultrason Sonochem. 2016 May; 30: 123-31. doi: 10.1016/j.ultsonch.2015.11.018
32. Jorfi S, Barzegar G, Ahmadi M, Darvishi Cheshmeh Soltani R, Alah Jafarzadeh Haghighifard N, Takdastan A, et al. Enhanced coagulation-photocatalytic treatment of Acid red 73 dye and real textile wastewater using UVA/synthesized MgO nanoparticles. J Environ Manage. 2016 Jul; 177: 111-18. doi: 10.1016/j.jenvman.2016.04.005
33. Vinu R, Madras G. Kinetics of simultaneous photocatalytic degradation of phenolic compounds and reduction of metal ions with nano-TiO2. Environ Sci Technol. 2008 Feb; 42(3): 913-19.
ارسال پیام به نویسنده مسئول


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sharifi Z, Asgari G, Seid-mohammadi A. Removal of phenol in aqueous solutions by ferrous activated persulfate in the present of UV irradiation. J Gorgan Univ Med Sci 2019; 21 (1) :113-122
URL: http://goums.ac.ir/journal/article-1-3250-fa.html

شریفی زهرا، عسگری قربان، صیدمحمدی عبدالمطلب. حذف فنل از محلول‌های آبی با استفاده از پرسولفات فعال شده با آهن دوظرفیتی در حضور امواج فرابنفش. مجله علمي دانشگاه علوم پزشكي گرگان. 1398; 21 (1) :113-122

URL: http://goums.ac.ir/journal/article-1-3250-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 21، شماره 1 - ( بهار 1398 ) برگشت به فهرست نسخه ها
مجله دانشگاه علوم پزشکی گرگان Journal of Gorgan University of Medical Sciences
Persian site map - English site map - Created in 0.05 seconds with 38 queries by YEKTAWEB 4660
Creative Commons License
This work is licensed under a Creative Commons — Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)