[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Indexing Sources::
Editorial Board::
Executive Members::
Articles Archive::
Instruction to Authors::
Peer-Review::
Contact Us::
Site Facilities::
::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.

Happy Persian New Year (Nowruz)


:: Volume 24, Issue 4 (12-2022) ::
J Gorgan Univ Med Sci 2022, 24(4): 28-36 Back to browse issues page
Effect of Thymoquinone on Hippocampal Oxidative Stress and Neuronal Density Following Aacrylamide in Male Rat
Seyyed Javad Mousavi1 , Mohammadhossein Gheini2 , Ashkan Sanaierad1 , Narges Haddadzadeh Niri1 , Mehrdad Roghani 3
1- Medical Student, School of Medicine, Shahed University, Tehran, Iran.
2- Assistant Professor, Department of Anatomy and Pathology, School of Medicine, Shahed University, Tehran, Iran.
3- Professor, Neurophysiology Research Center, Shahed University, Tehran, Iran. , mehjour@yahoo.com
Abstract:   (1364 Views)
Background and Objective: Acrylamide is a neurotoxic agent that increases oxidative stress by creating an imbalance between the production and removal of free radicals, which in turn contributes to the pathogenesis of some neurodegenerative disorders. Thymoquinone extracted from Nigella satvia has prominent antioxidant effects. The objective of this study was to evaluate the effects of thymoquinone on hippocampal oxidative stress and neuronal density following acrylamide administration in male rats.
Methods: In this experimental study, 28 male Wistar rats aged 10-12 weeks and weighing 180-200 g were randomly divided into 4 groups of 7 rats: control, acrylamide, acrylamide + thymoquinone treatment (1 mg/kg), and acrylamide + thymoquinone treatment (5 mg/kg). For induction of brain injury, 50 mg/kg of acrylamide was injected intraperitoneally. Two days after the acrylamide injection, the rats were sacrificed, and malondialdehyde (MDA), glutathione (GSH), and catalase levels were measured in hippocampal homogenate. Evaluation of neuronal density in hippocampal CA1 region was also performed by Nissl staining.
Results: Acrylamide injection significantly increased MDA level and reduced GSH content and catalase activity in comparison with the control group (P<0.05). Administration of 5 mg/kg thymoquinone significantly reduced MDA level (P<0.05) but improved GSH and catalase activity in comparison with the acrylamide group (P<0.05). In addition, neuron density of hippocampal CA1 region did not differ significantly between the groups.
Conclusion: Thymoquinone can attenuate oxidative stress markers in a dose-dependent manner.

 
Keywords: Acrylamide [MeSH], Thymoquinone , Hippocampus [MeSH], Oxidative Stress [MeSH]
Article ID: Vol24-48
Full-Text [PDF 739 kb]   (3846 Downloads)    
Type of Study: Original Articles | Subject: Neurosciences
References
1. Azami S, Roufegari-Nejad L. [The Effect of Red Grape Pomace Powder Replacement on Physical Characteristics and Acrylamide Content of Biscuit]. Iranian J Nutr Sci Food Technol. 2019; 14(1): 109-17. [Article in Persian] [View at Publisher]
2. Perera DN, Hewavitharana GG, Navaratne SB. Comprehensive Study on the Acrylamide Content of High Thermally Processed Foods. Biomed Res Int. 2021 Feb; 2021: 6258508. doi: 10.1155/2021/6258508 [DOI] [PubMed]
3. Abt E, Robin LP, McGrath S, Srinivasan J, DiNovi M, Adachi Y, et al. Acrylamide levels and dietary exposure from foods in the United States, an update based on 2011-2015 data. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2019 Oct; 36(10): 1475-90. doi: 10.1080/19440049.2019.1637548 [DOI] [PubMed]
4. Powers SJ, Mottram DS, Curtis A, Halford NG. Acrylamide levels in potato crisps in Europe from 2002 to 2016. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2017 Dec; 34(12): 2085-100. doi: 10.1080/19440049.2017.1379101 [DOI] [PubMed]
5. Adewale OO, Brimson JM, Odunola OA, Gbadegesin MA, Owumi SE, Isidoro C, et al. The Potential for Plant Derivatives against Acrylamide Neurotoxicity. Phytother Res. 2015 Jul; 29(7): 978-85. doi: 10.1002/ptr.5353 [DOI] [PubMed]
6. Friedman M. Acrylamide: inhibition of formation in processed food and mitigation of toxicity in cells, animals, and humans. Food Funct. 2015 Jun; 6(6): 1752-72. doi: 10.1039/c5fo00320b [DOI] [PubMed]
7. Kopanska M, Muchacka R, Czech J, Batoryna M, Formicki G. Acrylamide toxicity and cholinergic nervous system. J Physiol Pharmacol. 2018 Dec; 69(6):847-58. doi: 10.26402/jpp.2018.6.03 [DOI] [PubMed]
8. Kianfar M, Nezami A, Mehri S, Hosseinzadeh H, Hayes AW, Karimi G. The protective effect of fasudil against acrylamide-induced cytotoxicity in PC12 cells. Drug Chem Toxicol. 2020 Nov; 43(6): 595-601. doi: 10.1080/01480545.2018.1536140 [DOI] [PubMed]
9. Pan X, Wu X, Yan D, Peng C, Rao C, Yan H. Acrylamide-induced oxidative stress and inflammatory response are alleviated by N-acetylcysteine in PC12 cells: Involvement of the crosstalk between Nrf2 and NF-κB pathways regulated by MAPKs. Toxicol Lett. 2018 May; 288: 55-64. doi: 10.1016/j.toxlet.2018.02.002 [DOI] [PubMed]
10. Nowak A, Zakłos-Szyda M, Żyżelewicz D, Koszucka A, Motyl I. Acrylamide Decreases Cell Viability, and Provides Oxidative Stress, DNA Damage, and Apoptosis in Human Colon Adenocarcinoma Cell Line Caco-2. Molecules. 2020 Jan; 25(2): 368. doi: 10.3390/molecules25020368 [DOI] [PubMed]
11. Park JS, Samanta P, Lee S, Lee J, Cho JW, Chun HS, et al. Developmental and Neurotoxicity of Acrylamide to Zebrafish. Int J Mol Sci. 2021 Mar; 22(7): 3518. doi: 10.3390/ijms22073518 [DOI] [PubMed]
12. Dortaj H, Yadegari M, Hosseini Sharif Abad M, Abbasi Sarcheshmeh A, Anvari M. [Effects of Acrylamide and Vitamin C on Histological Changes and Stereological Parameters of Cerebellum in Rat Offsprings]. Shefaye Khatam 2014; 2(3): 9-18. doi: 10.18869/acadpub.shefa.2.3.9 [Article in Persian] [View at Publisher] [DOI]
13. Akhondian J, Kianifar H, Raoofziaee M, Moayedpour A, Toosi MB, Khajedaluee M. The effect of thymoquinone on intractable pediatric seizures (pilot study). Epilepsy Res. 2011 Jan; 93(1): 39-43. doi: 10.1016/j.eplepsyres.2010.10.010 [DOI] [PubMed]
14. Elmaci I, Altinoz MA. Thymoquinone: An edible redox-active quinone for the pharmacotherapy of neurodegenerative conditions and glial brain tumors. A short review. Biomed Pharmacother. 2016 Oct; 83: 635-40. doi: 10.1016/j.biopha.2016.07.018 [DOI] [PubMed]
15. Shao Y, Feng Y, Xie Y, Luo Q, Chen L, Li B, et al. Protective Effects of Thymoquinone Against Convulsant Activity Induced by Lithium-Pilocarpine in a model of Status Epilepticus. Neurochem Res. 2016 Dec; 41(12): 3399-406. doi: 10.1007/s11064-016-2074-y [DOI] [PubMed]
16. Shao YY, Li B, Huang YM, Luo Q, Xie YM, Chen YH. Thymoquinone Attenuates Brain Injury via an Anti-oxidative Pathway in a Status Epilepticus Rat Model. Transl Neurosci. 2017 Mar; 8: 9-14. doi: 10.1515/tnsci-2017-0003 [DOI] [PubMed]
17. Ullah I, Badshah H, Naseer MI, Lee HY, Kim MO. Thymoquinone and vitamin C attenuates pentylenetetrazole-induced seizures via activation of GABAB1 receptor in adult rats cortex and hippocampus. Neuromolecular Med. 2015 Mar; 17(1): 35-46. doi: 10.1007/s12017-014-8337-3 [DOI] [PubMed]
18. 18. Asgharzadeh F, Bargi R, Beheshti F, Hosseini M, Farzadnia M, Khazaei M. Thymoquinone restores liver fibrosis and improves oxidative stress status in a lipopolysaccharide-induced inflammation model in rats. Avicenna J Phytomed. 2017 Nov-Dec; 7(6): 502-10. [View at Publisher]
19. Zargar S, Siddiqi NJ, Ansar S, Alsulaimani MS, El Ansary AK. Therapeutic role of quercetin on oxidative damage induced by acrylamide in rat brain. Pharm Biol. 2016 Sep; 54(9): 1763-67. doi: 10.3109/13880209.2015.1127977 [DOI] [PubMed]
20. Albazal A, Delshad AA, Roghani M. Melatonin reverses cognitive deficits in streptozotocin-induced type 1 diabetes in the rat through attenuation of oxidative stress and inflammation. J Chem Neuroanat. 2021 Mar; 112: 101902. doi: 10.1016/j.jchemneu.2020.101902 [DOI] [PubMed]
21. Roghani M, Kalantari H, Khodayar MJ, Khorsandi L, Kalantar M, Goudarzi M, et al. Alleviation of Liver Dysfunction, Oxidative Stress and Inflammation Underlies the Protective Effect of Ferulic Acid in Methotrexate-Induced Hepatotoxicity. Drug Des Devel Ther. 2020 May; 14: 1933-41. doi: 10.2147/DDDT.S237107 [DOI] [PubMed]
22. Ramazi S, Fahanik-Babaei J, Mohamadi-Zarch SM, Tashakori-Miyanroudi M, Nourabadi D, Nazari-Serenjeh M, et al. Neuroprotective and anticonvulsant effects of sinomenine in kainate rat model of temporal lobe epilepsy: Involvement of oxidative stress, inflammation and pyroptosis. J Chem Neuroanat. 2020 Oct; 108: 101800. doi: 10.1016/j.jchemneu.2020.101800 [DOI] [PubMed]
23. LoPachin RM, Gavin T. Molecular mechanism of acrylamide neurotoxicity: lessons learned from organic chemistry. Environ Health Perspect. 2012 Dec; 120(12): 1650-57. doi: 10.1289/ehp.1205432 [DOI] [PubMed]
24. Parzefall W. Minireview on the toxicity of dietary acrylamide. Food Chem Toxicol. 2008 Apr; 46(4): 1360-64. doi: 10.1016/j.fct.2007.08.027 [DOI] [PubMed]
25. Pruser KN, Flynn NE. Acrylamide in health and disease. Front Biosci (Schol Ed). 2011 Jan; 3(1): 41-51. doi: 10.2741/s130 [DOI] [PubMed]
26. Davuljigari CB, Ekuban FA, Zong C, Fergany AAM, Morikawa K, Ichihara G. Nrf2 Activation Attenuates Acrylamide-Induced Neuropathy in Mice. Int J Mol Sci. 2021 Jun; 22(11): 5995. doi: 10.3390/ijms22115995 [DOI] [PubMed]
27. Hajimohammadi B, Athari SM, Abdollahi M, Vahedi G, Athari SS. Oral Administration of Acrylamide Worsens the Inflammatory Responses in the Airways of Asthmatic Mice Through Agitation of Oxidative Stress in the Lungs. Front Immunol. 2020 Oct; 11: 1940. doi: 10.3389/fimmu.2020.01940 [DOI] [PubMed]
28. Amirshahrokhi K. Acrylamide exposure aggravates the development of ulcerative colitis in mice through activation of NF-κB, inflammatory cytokines, iNOS, and oxidative stress. Iran J Basic Med Sci. 2021 Mar; 24(3): 312-21. doi: 10.22038/ijbms.2021.52233.11816 [DOI] [PubMed]
29. Aliev G, Palacios HH, Gasimov E, Obrenovich ME, Morales L, Leszek J, et al. Oxidative Stress Induced Mitochondrial Failure and Vascular Hypoperfusion as a Key Initiator for the Development of Alzheimer Disease. Pharmaceuticals (Basel). 2010 Jan; 3(1): 158-87. doi: 10.3390/ph3010158 [DOI] [PubMed]
30. Bisht K, Sharma K, Tremblay MÈ. Chronic stress as a risk factor for Alzheimer's disease: Roles of microglia-mediated synaptic remodeling, inflammation, and oxidative stress. Neurobiol Stress. 2018 May; 9: 9-21. doi: 10.1016/j.ynstr.2018.05.003 [DOI] [PubMed]
31. Huang TT, Zou Y, Corniola R. Oxidative stress and adult neurogenesis--effects of radiation and superoxide dismutase deficiency. Semin Cell Dev Biol. 2012 Sep; 23(7): 738-44. doi: 10.1016/j.semcdb.2012.04.003 [DOI] [PubMed]
32. Milton VJ, Sweeney ST. Oxidative stress in synapse development and function. Dev Neurobiol. 2012 Jan; 72(1): 100-10. doi: 10.1002/dneu.20957 [DOI] [PubMed]
33. Shaterzadeh-Yazdi H, Noorbakhsh MF, Samarghandian S, Farkhondeh T. An Overview on Renoprotective Effects of Thymoquinone. Kidney Dis (Basel). 2018 Jun; 4(2): 74-82. doi: 10.1159/000486829 [DOI] [PubMed]
34. Jakaria M, Cho DY, Ezazul Haque M, Karthivashan G, Kim IS, Ganesan P, et al. Neuropharmacological Potential and Delivery Prospects of Thymoquinone for Neurological Disorders. Oxid Med Cell Longev. 2018 Mar; 2018: 1209801. doi: 10.1155/2018/1209801 [DOI] [PubMed]
35. Mehri S, Shahi M, Razavi BM, Hassani FV, Hosseinzadeh H. Neuroprotective effect of thymoquinone in acrylamide-induced neurotoxicity in Wistar rats. Iran J Basic Med Sci. 2014 Dec; 17(12): 1007-11. [View at Publisher]
36. Taka E, Mazzio EA, Goodman CB, Redmon N, Flores-Rozas H, Reams R, et al. Anti-inflammatory effects of thymoquinone in activated BV-2 microglial cells. J Neuroimmunol. 2015 Sep; 286: 5-12. doi: 10.1016/j.jneuroim.2015.06.011 [DOI] [PubMed]
37. Tian F, Liu R, Fan C, Sun Y, Huang X, Nie Z, Zhao X, Pu X. Effects of Thymoquinone on Small-Molecule Metabolites in a Rat Model of Cerebral Ischemia Reperfusion Injury Assessed using MALDI-MSI. Metabolites. 2020 Jan; 10(1): 27. doi: 10.3390/metabo10010027 [DOI] [PubMed]
38. Hajipour S, Farbood Y, Dianat M, Rashno M, Khorsandi LS, Sarkaki A. Thymoquinone improves cognitive and hippocampal long-term potentiation deficits due to hepatic encephalopathy in rats. Iran J Basic Med Sci. 2021 Jul; 24(7): 881-91. doi: 10.22038/ijbms.2021.52824.11913 [DOI] [PubMed]
39. Aboubakr M, Elshafae SM, Abdelhiee EY, Fadl SE, Soliman A, Abdelkader A, et al. Antioxidant and Anti-Inflammatory Potential of Thymoquinone and Lycopene Mitigate the Chlorpyrifos-Induced Toxic Neuropathy. Pharmaceuticals (Basel). 2021 Sep; 14(9): 940. doi: 10.3390/ph14090940 [DOI] [PubMed]
40. Fanoudi S, Alavi MS, Hosseini M, Sadeghnia HR. Nigella sativa and thymoquinone attenuate oxidative stress and cognitive impairment following cerebral hypoperfusion in rats. Metab Brain Dis. 2019 Aug; 34(4): 1001-10. doi: 10.1007/s11011-019-00394-4 [DOI] [PubMed]
Send email to the article author


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mousavi S J, Gheini M, Sanaierad A, Haddadzadeh Niri N, Roghani M. Effect of Thymoquinone on Hippocampal Oxidative Stress and Neuronal Density Following Aacrylamide in Male Rat. J Gorgan Univ Med Sci 2022; 24 (4) :28-36
URL: http://goums.ac.ir/journal/article-1-4108-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 24, Issue 4 (12-2022) Back to browse issues page
مجله دانشگاه علوم پزشکی گرگان Journal of Gorgan University of Medical Sciences
Persian site map - English site map - Created in 0.05 seconds with 38 queries by YEKTAWEB 4645