1. Kumar A, Jakhmola A. RNA-mediated fluorescent Q-Pb nanoparticles. Langmuir. 2007; 23(6): 2915-18. doi:10.1021/la0628975 2. Piccinno F, Gottschalk F, Seeger S, Nowack B. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res. 2012; 14: 1109. doi:10.1007/s11051-012-1109-9 3. Raffa V, Ciofani G, Vittorio O, Riggio C, Cuschieri A. Physicochemical properties affecting cellular uptake of carbon nanotubes. Nanomedicine (Lond). 2010 Jan;5(1):89-97. doi:10.2217/nnm.09.95 4. Cherukuri P, Bachilo SM, Litovsky SH, Weisman RB. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J Am Chem Soc. 2004 Dec;126(48):15638-9. doi:10.1021/ja0466311 5. Stevens RM. New carbon nanotube AFM probe technology. Materials Today, 2009 Oct;12(1): 42-5. https://doi.org/10.1016/S1369-7021(09)70276-7 6. Liu Z, Fan AC, Rakhra K, Sherlock S, Goodwin A, Chen X, et al. Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew Chem Int Ed Engl. 2009;48(41):7668-72. doi:10.1002/anie.200902612 7. Lee J, Mahendra S, Alvarez PJ. Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. ACS Nano. 2010 Jul;4(7):3580-90. doi:10.1021/nn100866w 8. Hillegass JM, Shukla A, Lathrop SA, MacPherson MB, Fukagawa NK, Mossman BT. Assessing nanotoxicity in cells in vitro. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010 May; 2(3): 219-31. doi:10.1002/wnan.54 9. Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol. 2008 Jul;3(7):423-8. doi:10.1038/nnano.2008.111 10. Rajagopalan P, Wudl F, Schinazi RF, Boudinot FD. Pharmacokinetics of a water-soluble fullerene in rats. Antimicrob Agents Chemother. 1996 Oct;40(10):2262-5. 11. Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, et al. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci U S A. 2006 Feb;103(9):3357-62. doi:10.1073/pnas.0509009103 12. Shvedova AA, Kisin ER, Murray AR, Kommineni C, Castranova V, Fadeel B, Kagan VE. Increased accumulation of neutrophils and decreased fibrosis in the lung of NADPH oxidase-deficient C57BL/6 mice exposed to carbon nanotubes. Toxicol Appl Pharmacol. 2008 Sep;231(2):235-40. doi:10.1016/j.taap.2008.04.018 13. Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain. 1983 Jun;16(2):109-10. 14. Donaldson K, Murphy FA, Duffin R, Poland CA. Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol. 2010; 7(5):1-17. https://doi.org/10.1186/1743-8977-7-5 15. Ali-Boucetta H, Nunes A, Sainz R, Herrero MA, Tian B, Prato M, et al. Asbestos-like pathogenicity of long carbon nanotubes alleviated by chemical functionalization. Angew Chem Int Ed Engl. 2013 Feb;52(8):2274-8. doi:10.1002/anie.201207664 16. Sun B, Wang X, Ji Z, Wang M, Liao YP, Chang CH, et al. NADPH Oxidase-Dependent NLRP3 Inflammasome Activation and its Important Role in Lung Fibrosis by Multiwalled Carbon Nanotubes. Small. 2015 May; 11(17):2087-97. doi:10.1002/smll.201402859 17. Bhattacharya K, Andón FT, El-Sayed R, Fadeel B. Mechanisms of carbon nanotube-induced toxicity: focus on pulmonary inflammation. Adv Drug Deliv Rev. 2013 Dec;65(15):2087-97. doi:10.1016/j.addr.2013.05.012 18. Lacerda L, Ali-Boucetta H, Herrero MA, Pastorin G, Bianco A, Prato M, et al. Tissue histology and physiology following intravenous administration of different types of functionalized multiwalled carbon nanotubes. Nanomedicine (Lond). 2008 Apr;3(2):149-61. doi:10.2217/17435889.3.2.149 19. Jain S, Thakare VS, Das M, Godugu C, Jain AK, Mathur R, et al. Toxicity of multiwalled carbon nanotubes with end defects critically depends on their functionalization density. Chem Res Toxicol. 2011 Nov; 24(11):2028-39. doi:10.1021/tx2003728 20. Wang B, Feng WY, Wang TC, Jia G, Wang M, Shi JW, et al. Acute toxicity of nano- and micro-scale zinc powder in healthy adult mice. Toxicol Lett. 2006 Feb; 161(2):115-23. doi:10.1016/j.toxlet.2005.08.007 21. Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A. Organic functionalization of carbon nanotubes. J Am Chem Soc. 2002 Feb;124(5):760-1. 22. Smart SK, Cassady AI, Martin DJ. The biocompatibility of carbon nanotubes. Carbon. 2006;44(6): 1034-47. https://doi.org/10.1016/j.carbon.2005.10.011 23. Park MV, Neigh AM, Vermeulen JP, de la Fonteyne LJ, Verharen HW, Briedé JJ, et al. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials. 2011 Dec;32(36):9810-7. doi:10.1016/j.biomaterials.2011.08.085 24. Fadel TR, Sharp FA, Vudattu N, Ragheb R, Garyu J, Kim D, et al. A carbon nanotube-polymer composite for T-cell therapy. Nat Nanotechnol. 2014 Aug;9(8):639-47. doi:10.1038/nnano.2014.154
|