1. Chung EJ, Leon L, Rinaldi C. Nanoparticles for Biomedical Applications. Fundamental Concepts, Biological Interactions and Clinical Applications. 1st ed. 2019; pp: 1-4. doi: 10.1016/B978-0-12-816662-8.00001-1. 2. Waldron RD. Infrared spectra of ferrites. Phys Rev. 1955 Sep; 99(6): 1727. doi: 10.1103/PhysRev.99.1727. [ Link] [ DOI] 3. Solanki A, Kim JD, Lee KB. Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging. Nanomedicine (Lond). 2008 Aug; 3(4): 567-78. doi: 10.2217/17435889.3.4.567. [ DOI] [ PubMed] 4. Zheng K, Balasubramanian P, Paterson TE, Stein R, MacNeil S, Fiorilli S, et al. Ag modified mesoporous bioactive glass nanoparticles for enhanced antibacterial activity in 3D infected skin model. Mater Sci Eng C Mater Biol Appl. 2019 Oct; 103: 109764. doi: 10.1016/j.msec.2019.109764. [ DOI] [ PubMed] 5. Mady MF, Kelland MA. Review of Nanotechnology Impacts on Oilfield Scale Management. ACS Appl Nano Mater. 2020, 3(8): 7343-64. [ Link] 6. Kefeni KK, Msagati TAM, Nkambule TT, Mamba BB. Spinel ferrite nanoparticles and nanocomposites for biomedical applications and their toxicity. Mater Sci Eng C Mater Biol Appl. 2020 Feb; 107: 110314. doi: 10.1016/j.msec.2019.110314. [ DOI] [ PubMed] 7. Oroojalian F, Charbgoo F, Hashemi M, Amani A, Yazdian-Robati R, Mokhtarzadeh A, et al. Recent advances in nanotechnology-based drug delivery systems for the kidney. J Control Release. 2020 May; 321: 442-62. doi: 10.1016/j.jconrel.2020.02.027. [ DOI] [ PubMed] 8. Amiri S, Shokrollahi H. The role of cobalt ferrite magnetic nanoparticles in medical science. Mater Sci Eng C Mater Biol Appl. 2013 Jan; 33(1): 1-8. doi: 10.1016/j.msec.2012.09.003. [ DOI] [ PubMed] 9. Vinosha PA, Manikandan A, Preetha AC, Dinesh A, Slimani Y, Almesseire MA, et al. Review on Recent Advances of Synthesis, Magnetic Properties, and Water Treatment Applications of Cobalt Ferrite Nanoparticles and Nanocomposites. J Supercond Nov Magn. 2021; 34: 995-1018. doi: 10.1007/s10948-021-05854-6. [ Link] [ DOI] 10. Bououdina SM, Manoharan C. Dependence of structure/morphology on electrical/magnetic properties of hydrothermally synthesised cobalt ferrite nanoparticles. Journal of Magnetism and Magnetic Materials. 2020 Jan; 493: 165703. doi: 10.1016/J.JMMM.2019.165703. [ Link] [ DOI] 11. Khizar S, Ahmad NM, Ahmed N, Manzoor S, Hamayun MA, Naseer N, et al. Aminodextran Coated CoFe2O4 Nanoparticles for Combined Magnetic Resonance Imaging and Hyperthermia. Nanomaterials (Basel). 2020 Nov; 10(11): 2182. doi: 10.3390/nano10112182. [ DOI] [ PubMed] 12. Ahmad F, Zhou Y. Pitfalls and Challenges in Nanotoxicology: A Case of Cobalt Ferrite (CoFe2O4) Nanocomposites. Chem Res Toxicol. 2017 Feb; 30(2): 492-507. doi: 10.1021/acs.chemrestox.6b00377. [ DOI] [ PubMed] 13. Ziental D, Czarczynska-Goslinska B, Mlynarczyk DT, Glowacka-Sobotta A, Stanisz B, Goslinski T, et al. Titanium Dioxide Nanoparticles: Prospects and Applications in Medicine. Nanomaterials (Basel). 2020 Feb; 10(2): 387. doi: 10.3390/nano10020387. [ DOI] [ PubMed] 14. Raeeszadeh M, Heidari R, Khademi N. [Effect of Sumac (Rhus coriaria L.) Aqueous Extract on Liver Enzymes and Anxious Behavior Caused by Lead Poisoning in Rat]. J Mazandaran Univ Med Sci. 2021; 31(196): 136-42. [Article in Persian] [ View at Publisher] 15. Khalil M, Bazzi A, Zeineddine D, Jomaa W, Daher A, Awada R. Repressive effect of Rhus coriaria L. fruit extracts on microglial cells-mediated inflammatory and oxidative stress responses. J Ethnopharmacol. 2021 Apr; 269: 113748. doi: 10.1016/j.jep.2020.113748. [ DOI] [ PubMed] 16. Cullity BD, Stock SR. Elements of X-ray Diffraction. 3rd ed. Boston: Addison-Wesley Publishing. 1956. 17. Plan Sangnier A, Van de Walle AB, Curcio A, Le Borgne R, Motte L, Lalatonne Y, et al. Impact of magnetic nanoparticle surface coating on their long-term intracellular biodegradation in stem cells. Nanoscale. 2019 Sep; 11(35): 16488-98. doi: 10.1039/c9nr05624f. [ DOI] [ PubMed] 18. Alsamri H, Athamneh K, Pintus G, Eid AH, Iratni R. Pharmacological and Antioxidant Activities of Rhus coriaria L. (Sumac). Antioxidants (Basel). 2021 Jan; 10(1): 73. doi: 10.3390/antiox10010073. [ DOI] [ PubMed] 19. Abudayyak M, Altinçekiç Gürkaynak T, Özhan G. In Vitro Evaluation of the Toxicity of Cobalt Ferrite Nanoparticles in Kidney Cell. Turk J Pharm Sci. 2017 Aug; 14(2): 169-73. doi: 10.4274/tjps.99609. [ DOI] [ PubMed] 20. Abudayyak M, Altincekic Gurkaynak T, Özhan G. In Vitro Toxicological Assessment of Cobalt Ferrite Nanoparticles in Several Mammalian Cell Types. Biol Trace Elem Res. 2017 Feb; 175(2): 458-65. doi: 10.1007/s12011-016-0803-3. [ DOI] [ PubMed] 21. Zamay GS, Zamay TN, Lukyanenko KA, Kichkailo AS. Aptamers Increase Biocompatibility and Reduce the Toxicity of Magnetic Nanoparticles Used in Biomedicine. Biomedicines. 2020 Mar; 8(3): 59. doi: 10.3390/biomedicines8030059. [ DOI] [ PubMed] 22. Akhtar S, Khan Q, Anwar S, Ali G, Maqbool M, Khan M, et al. A Comparative Study of the Toxicity of Polyethylene Glycol-Coated Cobalt Ferrite Nanospheres and Nanoparticles. Nanoscale Res Lett. 2019 Dec; 14(1): 386. doi: 10.1186/s11671-019-3202-9. [ DOI] [ PubMed] 23. Ferson ND, Uhl AM, Andrew JS. Piezoelectric and Magnetoelectric Scaffolds for Tissue Regeneration and Biomedicine: A Review. IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Feb; 68(2): 229-41. doi: 10.1109/TUFFC.2020.3020283. [ DOI] [ PubMed] 24. Balakrishnan PB, Silvestri N, Fernandez-Cabada T, Marinaro F, Fernandes S, Fiorito S, et al. Exploiting Unique Alignment of Cobalt Ferrite Nanoparticles, Mild Hyperthermia, and Controlled Intrinsic Cobalt Toxicity for Cancer Therapy. Adv Mater. 2020 Nov; 32(45): e2003712. doi: 10.1002/adma.202003712. [ DOI] [ PubMed] 25. Shakil MS, Hasan MA, Uddin MF, Islam A, Nahar A, Das H, et al. In Vivo Toxicity Studies of Chitosan-Coated Cobalt Ferrite Nanocomplex for Its Application as MRI Contrast Dye. ACS Appl Bio Mater. 2020 Nov; 3(11): 7952-64. doi: 10.1021/acsabm.0c01069. [ DOI] [ PubMed]
|