Echocardiographic Estimation of Ventricular and Systolic Elastance in Fetuses during Mid-Gestation compared to Neonates
|
Alie Nikdoust * 1, Alireza Dehestani2 , Reza Shabanian3 , Minoo Dadkhah4 |
1- * Corresponding Author, Pediatric Cardiologist, Payaambar Azam Hospital, Kerman, Iran. , aliyehnikdost@gmail.com 2- Assistant Professor of Pediatric Cardiac Surgery, Department of Surgery, Tehran University of Medical Sciences, Tehran, Iran. 3- Associate Professor of Pediatric Cardiology, Department of Pediatric, Tehran University of Medical Sciences, Tehran, Iran. 4- Pediatric Cardiologist, Tehran University of Medical Sciences, Tehran, Iran. |
|
Abstract: (2504 Views) |
Background and Objective: Echocardiographic measurement of ventricular elastance is essential for evaluating cardiac function. With the technological advancements in echocardiography devices, assessing fetal heart function has become more accurate. Ventricular elastance reflects ventricular function, while arterial elastance measures ventricular afterload. Ventricular-arterial coupling demonstrates the interaction between the ventricle and artery. This study aimed to estimate ventricular end-systolic elastance, arterial elastance, and ventricular-arterial coupling using a non-invasive echocardiographic method.
Methods: This descriptive-analytical study was conducted on 67 fetuses with a gestational age of 19-24 weeks (38 female fetuses and 29 male fetuses) and 43 infants aged 10-60 days (25 female and 18 male) referred to the cardiac echocardiography clinic of the Children's Medical Center over a period of 14 months. Mothers and infants were healthy, and there was no structural heart disease in the fetuses and infants. Those with abnormal rhythm, a vague view, and an unfavorable quality of Doppler signal were excluded. Ventricular end-systolic elastance (Ea), arterial elastance (Ees), and ventricular-arterial coupling (Ea/Ees) were compared in fetuses with the calculated values in newborns. An estimation of the normal value for ventricular and arterial elastances and ventricular-arterial coupling in healthy fetuses and newborns were obtained.
Results: The mean arterial elastance of fetuses and newborns was determined as 84.4±20.04 mmHg/ml and 12.6±2.88 mmHg/ml, respectively (P<0.05). The mean ventricular elastance of fetuses and newborns was 88.5±20.49 mmHg/ml and 15.07±2.89 mmHg/ml, respectively (P<0.05). Fetal and newborn ventricular-arterial coupling were calculated as 0.96±0.14 mmHg/ml and 0.84±0.13 mmHg/ml, respectively (P<0.05).
Conclusion: The amounts of arterial and ventricular elastance and ventricular-arterial coupling in fetuses were significantly higher than infants and decreased with increasing age.
|
|
Keywords: Echocardiography [MeSH], Fetus [MeSH], End-Systolic Elastance , Arterial Elastance , Ventricular-Arterial Coupling Article ID: Vol25-08 |
|
Full-Text [PDF 754 kb]
(4942 Downloads)
|
Type of Study: Original Articles |
Subject:
Cardiovascular
|
|
|
|
|
References |
1. Ménigault E, Vieyres P, Lepoivre B, Durand A, Pourcelot L, Berson M. Fetal heart modelling based on a pressure-volume relationship. Med Biol Eng Comput. 1997; 35: 715-21. doi: 10.1007/BF02510983 [ Link] [ DOI] 2. Hamill N, Yeo L, Romero R, Hassan SS, Myers SA, Mittal P, et al. Fetal cardiac ventricular volume, cardiac output, and ejection fraction determined with 4-dimensional ultrasound using spatiotemporal image correlation and virtual organ computer-aided analysis. Am J Obstet Gynecol. 2011 Jul; 205(1): 76.e1-10. doi: 10.1016/j.ajog.2011.02.028 [ DOI] [ PubMed] 3. Antonini-Canterin F, Poli S, Vriz O, Pavan D, Bello VD, Nicolosi GL. The Ventricular-Arterial Coupling: From Basic Pathophysiology to Clinical Application in the Echocardiography Laboratory. J Cardiovasc Echogr. 2013 Oct-Dec; 23(4): 91-95. doi: 10.4103/2211-4122.127408 [ DOI] [ PubMed] 4. Yano M, Kohno M, Konishi M, Obayashi M, Kobayashi S, Seki K, et al. Effect of aortic impedance on preload-afterload mismatch in canine hearts in situ. Basic Res Cardiol. 1997 Apr; 92(2): 115-22. doi: 10.1007/BF00805572 [ DOI] [ PubMed] 5. Berger DS, Robinson KA, Shroff SG. Wave propagation in coupled left ventricle-arterial system. Implications for aortic pressure. Hypertension. 1996 May; 27(5): 1079-89. doi: 10.1161/01.hyp.27.5.1079 [ DOI] [ PubMed] 6. Klautz RJ, Teitel DF, Steendijk P, van Bel F, Baan J. Interaction between afterload and contractility in the newborn heart: evidence of homeometric autoregulation in the intact circulation. J Am Coll Cardiol. 1995 May; 25(6): 1428-35. doi: 10.1016/0735-1097(94)00562-5 [ DOI] [ PubMed] 7. Suga H, Sagawa K, Kostiuk DP. Controls of ventricular contractility assessed by pressure-volume ration, Emax. Cardiovasc Res. 1976 Sep; 10(5): 582-92. doi: 10.1093/cvr/10.5.582 [ Link] [ DOI] 8. Little WC, Pu M. Left ventricular-arterial coupling. J Am Soc Echocardiogr. 2009; 22: 1246-48. doi: 10.1016/j.echo.2009.09.023 [ DOI] [ PubMed] 9. Feldman MD, Pak PH, Wu CC, Haber HL, Heesch CM, Bergin JD, et al. Acute cardiovascular effects of OPC-18790 in patients with congestive heart failure. Time- and dose-dependence analysis based on pressure-volume relations. Circulation. 1996 Feb; 93(3): 474-83. doi: 10.1161/01.cir.93.3.474 [ DOI] [ PubMed] 10. Chen CH, Nakayama M, Nevo E, Fetics BJ, Maughan WL, Kass DA. Coupled systolic-ventricular and vascular stiffening with age: implications for pressure regulation and cardiac reserve in the elderly. J Am Coll Cardiol. 1998 Nov; 32(5): 1221-27. doi: 10.1016/s0735-1097(98)00374-x [ DOI] [ PubMed] 11. Pak PH, Maughan WL, Baughman KL, Kieval RS, Kass DA. Mechanism of acute mechanical benefit from VDD pacing in hypertrophied heart: similarity of responses in hypertrophic cardiomyopathy and hypertensive heart disease. Circulation. 1998 Jul; 98(3): 242-48. doi: 10.1161/01.cir.98.3.242 [ DOI] [ PubMed] 12. Kiani A, Gilani Shakibi J. Normal Value of Left Ventricular End-Systolic Elastance in Infants and Children. Iranian Journal of Medical Sciences. 2015; 28(4): 169-72. [ View at Publisher] 13. Khosroshahi HE, Ozkan EA, Kilic M. Arterial and left ventricular end-systolic elastance in normal children. Eur Rev Med Pharmacol Sci. 2014; 18(21): 3260-66. [ PubMed] 14. Kameyama T, Asanoi H, Ishizaka S, Sasayama S. Ventricular load optimization by unloading therapy in patients with heart failure. J Am Coll Cardiol. 1991 Jan; 17(1): 199-207. doi: 10.1016/0735-1097(91)90728-r [ DOI] [ PubMed] 15. Chen CH, Fetics B, Nevo E, Rochitte CE, Chiou KR, Ding PA, et al. Noninvasive single-beat determination of left ventricular end-systolic elastance in humans. J Am Coll Cardiol. 2001 Dec; 38(7): 2028-34. doi: 10.1016/s0735-1097(01)01651-5 [ DOI] [ PubMed] 16. Struijk PC, Mathews VJ, Loupas T, Stewart PA, Clark EB, Steegers EAP, et al. Blood pressure estimation in the human fetal descending aorta. Ultrasound Obstet Gynecol. 2008 Oct; 32(5): 673-81. doi: 10.1002/uog.6137 [ DOI] [ PubMed] 17. De Tombe PP, Jones S, Burkhoff D, Hunter WC, Kass DA. Ventricular stroke work and efficiency both remain nearly optimal despite altered vascular loading. Am J Physiol. 1993 Jun; 264(6 Pt 2): H1817-24. doi: 10.1152/ajpheart.1993.264.6.H1817 [ DOI] [ PubMed] 18. Borlaug BA, Kass DA. Ventricular-vascular interaction in heart failure. Heart Fail Clin. 2008 Jan; 4(1): 23-36. doi: 10.1016/j.hfc.2007.10.001 [ DOI] [ PubMed] 19. Ohte N, Cheng CP, Little WC. Tachycardia exacerbates abnormal left ventricular-arterial coupling in heart failure. Heart Vessels. 2003 Jul; 18(3): 136-41. doi: 10.1007/s00380-003-0697-9 [ DOI] [ PubMed]
|
|
Send email to the article author |
|
|
Nikdoust A, Dehestani A, Shabanian R, Dadkhah M. Echocardiographic Estimation of Ventricular and Systolic Elastance in Fetuses during Mid-Gestation compared to Neonates. J Gorgan Univ Med Sci 2023; 25 (1) :64-69 URL: http://goums.ac.ir/journal/article-1-4207-en.html
|