[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Editorial Board::
Executive Members::
Instruction to Authors::
Peer Review::
Articles Archive::
Indexing Databases::
Contact Us::
Site Facilities::
::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
:: Volume 24, Issue 3 (10-2022) ::
J Gorgan Univ Med Sci 2022, 24(3): 41-50 Back to browse issues page
Effects of Lithium on Morphine Tolerance Using Analgesia, Nitrite Determination, Histology and Immunohistochemistry of Forehead Cortex in Adult Male Swiss Mice
Saman Barzegar1 , Tayebeh Noori2 , Mohammad Hosein Farzaei3 , Mozafar Khazaei4 , Samira Shirooie * 5
1- Pharm.D Student, Student Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
2- M.Sc in Applied Chemistry, Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
3- Associate Professor, Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
4- Professor, Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
5- Assistant Professor, Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran. , shirooie@gmail.com
Abstract:   (2673 Views)
Background and Objective: Chronic use of opioids leads to analgesic tolerance. Protein kinase C (PKC), adenylyl cyclase (AC), nitric oxide (NO) and glycogen synthase kinase 3 beta (GSK-3β) are involved in morphine tolerance. Lithium activates the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) pathway that inhibits GSK-3β and reduces morphine-induced tolerance. This study was performed to evaluate the effects of lithium on morphine dependence symptoms and tolerance of its analgesic effects in Swiss mice by GSK-3β signaling.
Methods: This experimental study was performed on 56 Swiss male albino mice that were randomly allocated into 8 groups (each containing 7 mice). The intraperitoneal injection of morphine at different concentrations (50, 50 and 75 mg/kg) and different hours (08:00, 11:00 and 16:00, respectively) was performed for 4 days, and a single dose 50 mg/kg was administered on the 5th day. The effects of three doses of lithium (1, 5 and 10 mg/kg) given orally, 45 min before morphine injections on morphine-induced analgesic tolerance were evaluated. To evaluate analgesia latency on day 1, 3 and 5, tail flick and hot plate tests were done. The brain of each animal was removed to measure nitrite levels, and histological evaluation and immunohistochemistry for p-glycogen synthase (p-GSSer640) were performed on the last day of the study.
Results: Co-administration of lithium significantly increased the latency of analgesia in comparison with the morphine group on the 3rd and 5th day (P<0.05). Lithium reduced the morphine-induced increase of nitrite levels and also reduced brain damage. In addition, immunohistochemistry assay of p-GSSer640 indicated a significant reduction of the morphine-induced phosphorylation of GS at S640 by GSK in the lithium-treated mice.
Conclusion: Lithium administration can reduce morphine tolerance in adult male Swiss mice.

Keywords: Opioid [MeSH], Pain [MeSH], Morphine [MeSH], Glycogen Synthase Kinase 3 beta [MeSH], Lithium [MeSH]
Article ID: Vol24-34
Full-Text [PDF 1363 kb]   (9106 Downloads)    
Type of Study: Original Articles | Subject: Pharmacology
References
1. Dai WL, Xiong F, Yan B, Cao ZY, Liu WT, Liu JH, et al. Blockade of neuronal dopamine D2 receptor attenuates morphine tolerance in mice spinal cord. Sci Rep. 2016; 6: 38746. DOI: 10.1038/srep38746 [Link] [DOI]
2. Esmaeili-Mahani S, Ebrahimi B, Abbasnejad M, Rasoulian B, Sheibani V. Satureja khuzestanica prevents the development of morphine analgesic tolerance through suppression of spinal glial cell activation in rats. J Nat Med. 2015 Apr; 69(2): 165-70. DOI: 10.1007/s11418-013-0796-6 [DOI] [PubMed]
3. Cooper ZD, Johnson KW, Pavlicova M, Glass A, Vosburg SK, Sullivan MA, et al. The effects of ibudilast, a glial activation inhibitor, on opioid withdrawal symptoms in opioid-dependent volunteers. Addict Biol. 2016 Jul; 21(4): 895-903. DOI: 10.1111/adb.12261 [DOI] [PubMed]
4. Liao WW, Tsai SY, Liao CC, Chen KB, Yeh GC, Chen JY, et al. Coadministration of glycogen-synthase kinase 3 inhibitor with morphine attenuates chronic morphine-induced analgesic tolerance and withdrawal syndrome. J Chin Med Assoc. 2014 Jan; 77(1): 31-37. DOI: 10.1016/j.jcma.2013.09.008 [DOI] [PubMed]
5. Shams J, Sahraei H, Faghih-Monzavi Z, Salimi SH, Fatemi SM, Pourmatabbed A, et al. Effects of Papaver rhoeas Extract on the Tolerance Development to Analgesic Effects of Morphine in Mice. Iranian Journal of Pharmaceutical Research. 2008; 7(2): 141-47. [View at Publisher]
6. Hamdy MM, Elbadr MM, Barakat A. Bupropion attenuates morphine tolerance and dependence: Possible role of glutamate, norepinephrine, inflammation, and oxidative stress. Pharmacol Rep. 2018 Oct; 70(5): 955-62. DOI: 10.1016/j.pharep.2018.04.003 [DOI] [PubMed]
7. Hassanipour M, Rajai N, Rahimi N, Fatemi I, Jalali M, Akbarian R, et al. Sumatriptan effects on morphine-induced antinociceptive tolerance and physical dependence: The role of nitric oxide. Eur J Pharmacol. 2018 Sep; 835: 52-60. DOI: 10.1016/j.ejphar.2018.07.021 [DOI] [PubMed]
8. Zheng GL, Su Z, An LJ, Liu HL. [Roles of GSK-3beta signling pathway in chrohic morphine tolerance in rat]. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2015 Sep; 31(5): 389-91. [Article in Chinese] [View at Publisher]
9. Kalinderi K, Fidani L, Katsarou Z, Clarimón J, Bostantjopoulou S, Kotsis A. GSK3β polymorphisms, MAPT H1 haplotype and Parkinson's disease in a Greek cohort. Neurobiol Aging. 2011 Mar; 32(3): 546.e1-5. DOI: 10.1016/j.neurobiolaging.2009.05.007 [DOI] [PubMed]
10. Snitow ME, Bhansali RS, Klein PS. Lithium and Therapeutic Targeting of GSK-3. Cells. 2021 Jan; 10(2): 255. DOI: 10.3390/cells10020255 [DOI] [PubMed]
11. Muneer A. Wnt and GSK3 Signaling Pathways in Bipolar Disorder: Clinical and Therapeutic Implications. Clin Psychopharmacol Neurosci. 2017 May; 15(2): 100-14. DOI: 10.9758/cpn.2017.15.2.100 [DOI] [PubMed]
12. Muller DL, Unterwald EM. In vivo regulation of extracellular signal-regulated protein kinase (ERK) and protein kinase B (Akt) phosphorylation by acute and chronic morphine. J Pharmacol Exp Ther. 2004 Aug; 310(2): 774-82. DOI: 10.1124/jpet.104.066548 [DOI] [PubMed]
13. Parkitna JR, Obara I, Wawrzczak-Bargiela A, Makuch W, Przewlocka B, Przewlocki R. Effects of glycogen synthase kinase 3beta and cyclin-dependent kinase 5 inhibitors on morphine-induced analgesia and tolerance in rats. J Pharmacol Exp Ther. 2006 Nov; 319(2): 832-39. DOI: 10.1124/jpet.106.107581 [DOI] [PubMed]
14. Baser T, Ozdemir E, Filiz AK, Taskiran AS, Gursoy S. Ghrelin receptor agonist hexarelin attenuates antinociceptive tolerance to morphine in rats. Can J Physiol Pharmacol. 2021 May; 99(5): 461-67. DOI: 10.1139/cjpp-2020-0218 [DOI] [PubMed]
15. O'Brien WT, Klein PS. Validating GSK3 as an in vivo target of lithium action. Biochem Soc Trans. 2009 Oct; 37(Pt 5): 1133-38. DOI: 10.1042/BST0371133 [DOI] [PubMed]
16. Kocman AE, DAĞ İ, ŞENGEL T, Sortutar E, CANBEK M. The effect of lithium and lithium-loaded hyaluronic acid hydrogel applications on nerve regeneration and recovery of motor functions in peripheral nerve injury. Rendiconti Lincei. Scienze Fisiche e Naturali. 2020; 31(3): 889-904. DOI: 10.1007/s12210-020-00919-5 [View at Publisher] [DOI]
17. Shimizu T, Shibata M, Wakisaka S, Inoue T, Mashimo T, Yoshiya I. Intrathecal lithium reduces neuropathic pain responses in a rat model of peripheral neuropathy. Pain. 2000 Mar; 85(1-2): 59-64. DOI: 10.1016/s0304-3959(99)00249-3 [DOI] [PubMed]
18. Shirooie S, Esmaeili J, Sureda A, Esmaeili N, Mirzaee Saffari P, Yousefi-Manesh H, et al. Evaluation of the effects of metformin administration on morphine tolerance in mice. Neurosci Lett. 2020 Jan; 716: 134638. DOI: 10.1016/j.neulet.2019.134638 [DOI] [PubMed]
19. Shirooie S, Sahebgharani M, Esmaeili J, Dehpour AR. In vitro evaluation of effects of metformin on morphine and methadone tolerance through mammalian target of rapamycin signaling pathway. J Cell Physiol. 2019 Mar; 234(3): 3058-66. DOI: 10.1002/jcp.27125 [DOI] [PubMed]
20. Montgomery LS. Pain management with opioids in adults. J Neurosci Res. 2022 Jan; 100(1): 10-18. DOI: 10.1002/jnr.24695 [DOI] [PubMed]
21. Colvin LA, Bull F, Hales TG. Perioperative opioid analgesia-when is enough too much? A review of opioid-induced tolerance and hyperalgesia. Lancet. 2019 Apr; 393(10180): 1558-68. DOI: 10.1016/S0140-6736(19)30430-1 [DOI] [PubMed]
22. Allouche S, Noble F, Marie N. Opioid receptor desensitization: mechanisms and its link to tolerance. Front Pharmacol. 2014 Dec; 5: 280. DOI: 10.3389/fphar.2014.00280 [DOI] [PubMed]
23. Pan Y, Sun X, Jiang L, Hu L, Kong H, Han Y, et al. Metformin reduces morphine tolerance by inhibiting microglial-mediated neuroinflammation. J Neuroinflammation. 2016 Nov; 13(1): 294. DOI: 10.1186/s12974-016-0754-9 [DOI] [PubMed]
24. Javadi S, Ejtemaeimehr S, Keyvanfar HR, Moghaddas P, Aminian A, Rajabzadeh A, et al. Pioglitazone potentiates development of morphine-dependence in mice: possible role of NO/cGMP pathway. Brain Res. 2013 May; 1510: 22-37. DOI: 10.1016/j.brainres.2012.12.035 [DOI] [PubMed]
25. Toda N, Kishioka S, Hatano Y, Toda H. Modulation of opioid actions by nitric oxide signaling. Anesthesiology. 2009 Jan; 110(1): 166-81. DOI: 10.1097/ALN.0b013e31819146a9 [DOI] [PubMed]
26. Beurel E, Grieco SF, Jope RS. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther. 2015 Apr; 148: 114-31. DOI: 10.1016/j.pharmthera.2014.11.016 [DOI] [PubMed]
27. Embi N, Rylatt DB, Cohen P. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem. 1980 Jun; 107(2): 519-27. [PubMed]
28. Dajani R, Fraser E, Roe SM, Young N, Good V, Dale TC, et al. Crystal structure of glycogen synthase kinase 3 beta: structural basis for phosphate-primed substrate specificity and autoinhibition. Cell. 2001 Jun; 105(6): 721-32. DOI: 10.1016/s0092-8674(01)00374-9 [DOI] [PubMed]
29. Barr JL, Unterwald EM. Glycogen synthase kinase-3 signaling in cellular and behavioral responses to psychostimulant drugs. Biochim Biophys Acta Mol Cell Res. 2020 Sep; 1867(9): 118746. DOI: 10.1016/j.bbamcr.2020.118746 [DOI] [PubMed]
30. Nezamoleslami S, Sheibani M, Mumtaz F, Esmaeili J, Shafaroodi H, Dehpour AR. Lithium reverses the effect of opioids on eNOS/nitric oxide pathway in human umbilical vein endothelial cells. Mol Biol Rep. 2020 Sep; 47(9): 6829-40. DOI: 10.1007/s11033-020-05740-9 [DOI] [PubMed]
31. Dobashi T, Tanabe S, Jin H, Mimura N, Yamamoto T, Nishino T, et al. BiP, an endoplasmic reticulum chaperone, modulates the development of morphine antinociceptive tolerance. J Cell Mol Med. 2010 Dec; 14(12): 2816-26. DOI: 10.1111/j.1582-4934.2009.00932.x [DOI] [PubMed]
32. Maixner DW, Weng HR. The Role of Glycogen Synthase Kinase 3 Beta in Neuroinflammation and Pain. J Pharm Pharmacol (Los Angel). 2013; 1(1): 001. DOI: 10.13188/2327-204X.1000001 [DOI] [PubMed]
33. Masvekar RR, El-Hage N, Hauser KF, Knapp PE. GSK3β-activation is a point of convergence for HIV-1 and opiate-mediated interactive neurotoxicity. Mol Cell Neurosci. 2015 Mar; 65: 11-20. DOI: 10.1016/j.mcn.2015.01.001 [DOI] [PubMed]
34. Klein PS, Melton DA. A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci U S A. 1996 Aug; 93(16): 8455-59. DOI: 10.1073/pnas.93.16.8455 [DOI] [PubMed]
35. Stambolic V, Ruel L, Woodgett JR. Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Biol. 1996 Dec; 6(12): 1664-68. DOI: 10.1016/s0960-9822(02)70790-2 [DOI] [PubMed]
36. Chalecka-Franaszek E, Chuang DM. Lithium activates the serine/threonine kinase Akt-1 and suppresses glutamate-induced inhibition of Akt-1 activity in neurons. Proc Natl Acad Sci U S A. 1999 Jul; 96(15): 8745-50. DOI: 10.1073/pnas.96.15.8745 [DOI] [PubMed]
37. Harvey B, Carstens M, Taljaard J. Lithium modulation of cortical cyclic nucleotides: evidence for the Yin-Yang hypothesis. Eur J Pharmacol. 1990 Jan; 175(2): 129-36. DOI: 10.1016/0014-2999(90)90223-s [DOI] [PubMed]
38. Ghasemi M, Dehpour AR. The NMDA receptor/nitric oxide pathway: a target for the therapeutic and toxic effects of lithium. Trends Pharmacol Sci. 2011 Jul; 32(7): 420-34. DOI: 10.1016/j.tips.2011.03.006 [DOI] [PubMed]
39. Weinsanto I, Mouheiche J, Laux-Biehlmann A, Aouad M, Maduna T, Petit-Demoulière N, et al. Lithium reverses mechanical allodynia through a mu opioid-dependent mechanism. Mol Pain. 2018 Jan-Dec; 14: 1744806917754142. DOI: 10.1177/1744806917754142 [DOI] [PubMed]
40. Belmaker RH, Agam G. The Effect of Lithium on Adenylyl Cyclase: Thirty-Five Years of Research (1975~2010). Clinical Psychopharmacology and Neuroscience. 2010; 8(3): 127-32. [Link]
41. Nassar A, Azab AN. Effects of lithium on inflammation. ACS Chem Neurosci. 2014 Jun; 5(6): 451-58. DOI: 10.1021/cn500038f [DOI] [PubMed]
42. Alborzi A, Mehr SE, Rezania F, Badakhshan S, Mombeini T, Shafaroodi H, et al. The effect of lithium chloride on morphine-induced tolerance and dependence in isolated guinea pig ileum. Eur J Pharmacol. 2006 Sep; 545(2-3): 123-28. DOI: 10.1016/j.ejphar.2006.06.061 [DOI] [PubMed]
43. Iranpour M, Torkzadeh-Tabrizi S, Khatoon-Asadi Z, Malekpour-Afshar R. Immunohistochemical Assessment of Inflammation and Regeneration in Morphine-Dependent Rat Brain. Addict Health. 2018 Jul; 10(3): 156-61. DOI: 10.22122/ahj.v10i3.651 [DOI] [PubMed]
44. Niknam NA, Azarnia M, Bahadoran H, Kazemi M, Tekieh E, Ranjbaran M, et al. Evaluating the effects of oral morphine on embryonic development of cerebellum in wistar rats. Basic Clin Neurosci. 2013; 4(2): 130-35. [PubMed]
Send email to the article author


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Barzegar S, Noori T, Farzaei M H, Khazaei M, Shirooie S. Effects of Lithium on Morphine Tolerance Using Analgesia, Nitrite Determination, Histology and Immunohistochemistry of Forehead Cortex in Adult Male Swiss Mice. J Gorgan Univ Med Sci 2022; 24 (3) :41-50
URL: http://goums.ac.ir/journal/article-1-4088-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 24, Issue 3 (10-2022) Back to browse issues page
مجله دانشگاه علوم پزشکی گرگان Journal of Gorgan University of Medical Sciences
Persian site map - English site map - Created in 0.05 seconds with 36 queries by YEKTAWEB 4660
Creative Commons License
This work is licensed under a Creative Commons — Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)