1. Braunwald E, Pfeffer MA. Ventricular enlargement and remodeling following acute myocardial infarction: mechanisms and management. Am J Cardiol. 1991 Nov; 68(14): 1D-6D. doi: 10.1016/0002-9149(91)90255-j 2. Nöth U, Osyczka AM, Tuli R, Hickok NJ, Danielson KG, Tuan RS. Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells. J Orthop Res. 2002 Sep; 20(5): 1060-69. doi: 10.1016/S0736-0266(02)00018-9 3. Christoforou N, Gearhart JD. Stem cells and their potential in cell-based cardiac therapies. Prog Cardiovasc Dis. 2007 May-Jun; 49(6): 396-413. doi: 10.1016/j.pcad.2007.02.006 4. Minguell JJ, Erices A, Conget P. Mesenchymal stem cells. Exp Biol Med (Maywood). 2001 Jun; 226(6): 507-20. doi: 10.1177/153537020122600603 5. Burlacu A, Rosca AM, Maniu H, Titorencu I, Dragan E, Jinga V, et al. Promoting effect of 5-azacytidine on the myogenic differentiation of bone marrow stromal cells. Eur J Cell Biol. 2008 Mar; 87(3): 173-84. doi: 10.1016/j.ejcb.2007.09.003 6. Anversa P, Fitzpatrick D, Argani S, Capasso JM. Myocyte mitotic division in the aging mammalian rat heart. Circ Res. 1991 Oct; 69(4): 1159-64. 7. Urbanek K, Torella D, Sheikh F, De Angelis A, Nurzynska D, Silvestri F, et al. Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc Natl Acad Sci USA. 2005; 102(24): 8692-97. doi: 10.1073/pnas.0500169102 8. Antonitsis P, Ioannidou-Papagiannaki E, Kaidoglou A, Papakonstantinou C. In vitro cardiomyogenic differentiation of adult human bone marrow mesenchymal stem cells. The role of 5-azacytidine. Interact Cardiovasc Thorac Surg. 2007 Oct; 6(5): 593-97. doi: 10.1510/icvts.2007.157875 9. Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest. 1999 Mar; 103(5): 697-705. doi: 10.1172/JCI5298 10. Liu Y, Song J, Liu W, Wan Y, Chen X, Hu C. Growth and differentiation of rat bone marrow stromal cells: does 5-azacytidine trigger their cardiomyogenic differentiation? Cardiovasc Res. 2003 May; 58(2): 460-68. doi: 10.1016/s0008-6363(03)00265-7 11. Saki N, Jalalifar MA, Soleimani M, Hajizamani S, Rahim F. Adverse effect of high glucose concentration on stem cell therapy. Int J Hematol Oncol Stem Cell Res. 2013; 7(3): 34-40. 12. Stolzing A, Coleman N, Scutt A. Glucose-induced replicative senescence in mesenchymal stem cells. Rejuvenation Res. 2006; 9(1): 31-35. doi: 10.1089/rej.2006.9.31 13. Chang J, Li Y, Huang Y, Lam KS, Hoo RL, Wong WT, et al. Adiponectin prevents diabetic premature senescence of endothelial progenitor cells and promotes endothelial repair by suppressing the p38 MAP kinase/p16INK4A signaling pathway. Diabetes. 2010 Nov; 59(11): 2949-59. doi: 10.2337/db10-0582 14. Yang P, Chen X, Kaushal S. Reece EA, Yang P. High glucose suppresses embryonic stem cell differentiation into cardiomyocytes. Stem Cell Res Ther. 2016; 7: 187. doi: 10.1186/s13287-016-0446-5 15. Li WJ, Guo QQ, Gharibeh L, Xu R, Chen S, Sun K. Inhibition of Cardiomyogenesis in Embryocarcinoma Cells Induced by Long-Term High Level of Glucose. Cell Physiol Biochem. 2016; 38(5): 2041-52. doi: 10.1159/000445563 16. Li WY, Song YL, Xiong CJ, Lu PQ, Xue LX, Yao CX, et al. Insulin induces proliferation and cardiac differentiation of P19CL6 cells in a dose-dependent manner. Dev Growth Differ. 2013 Sep; 55(7): 676-86. doi: 10.1111/dgd.12075 17. Nakano H, Minami I, Braas D, Pappoe H, Wu X, Sagadevan A, et al. Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis. Elife. 2017 Dec; 6. pii: e29330. doi: 10.7554/eLife.29330 18. Khajeniazi S, Solati M, Yazdani Y, Soleimani M, Kianmehr A. Synergistic induction of cardiomyocyte differentiation from human bone marrow mesenchymal stem cells by interleukin 1β and 5-azacytidine. Biol Chem. 2016 Dec; 397(12): 1355-64. doi: 10.1515/hsz-2016-0151 19. Boheler KR, Czyz J, Tweedie D, Yang HT, Anisimov SV, Wobus AM. Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ Res. 2002 Aug; 91(3): 189-201. 20. Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine LB, Azarin SM, et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A. 2012 Jul; 109(27): E1848-57. doi: 10.1073/pnas.1200250109 21. Kadivar M, Khatami S, Mortazavi Y, Shokrgozar MA, Taghikhani M, Soleimani M. In vitro cardiomyogenic potential of human umbilical vein-derived mesenchymal stem cells. Biochem Biophys Res Commun. 2006 Feb; 340(2): 639-47. doi: 10.1016/j.bbrc.2005.12.047 22. Lian X, Zhang J, Azarin SM, Zhu K, Hazeltine LB, Bao X, et al. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat Protoc. 2013 Jan; 8(1): 162-75. doi: 10.1038/nprot.2012.150 23. Li YM, Schilling T, Benisch P, Zeck S, Meissner-Weigl J, Schneider D, et al. Effects of high glucose on mesenchymal stem cell proliferation and differentiation. Biochem Biophys Res Commun. 2007 Nov; 363(1): 209-15. doi: 10.1016/j.bbrc.2007.08.161 24. Wang J, Wang B, Li Y, Wang D, Lingling E, Bai Y, Liu H. High glucose inhibits osteogenic differentiation through the BMP signaling pathway in bone mesenchymal stem cells in mice. EXCLI J. 2013 Jun; 12: 584-97. 25. Balistreri M, Davis JA, Campbell KF, Da Rocha AM, Treadwell MC, Herron TJ. Effect of Glucose on 3D Cardiac Microtissues Derived from Human Induced Pluripotent Stem Cells. Pediatr Cardiol. 2017 Dec; 38(8): 1575-82. doi: 10.1007/s00246-017-1698-2 26. Ku PM, Chen LJ, Liang JR, Cheng KC, Li YX, Cheng JT. Molecular role of GATA binding protein 4 (GATA-4) in hyperglycemia-induced reduction of cardiac contractility. Cardiovasc Diabetol. 2011 Jun; 10: 57. doi: 10.1186/1475-2840-10-57 27. Hitsumoto T, Shirai K. Factors affecting high-sensitivity cardiac troponin T elevation in Japanese metabolic syndrome patients. Diabetes Metab Syndr Obes. 2015 Mar; 8: 157-62. doi: 10.2147/DMSO.S80907 28. Sato T, Haimovici R, Kao R, Li AF, Roy S. Downregulation of connexin 43 expression by high glucose reduces gap junction activity in microvascular endothelial cells. Diabetes. 2002 May; 51(5): 1565-71. doi: 10.2337/diabetes.51.5.1565
|