[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Indexing Sources::
Editorial Board::
Executive Members::
Articles Archive::
Instruction to Authors::
Peer-Review::
Contact Us::
Site Facilities::
::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
:: Volume 20, Issue 4 (12-2018) ::
J Gorgan Univ Med Sci 2018, 20(4): 108-114 Back to browse issues page
Antibiotic resistance and phenotypically and genotypically AmpC beta-lactamases among Escherichia coli isolates from Outpatients
Alisha Akya1 , Azam Elahi * 2, Roya Chegene Lorestani3 , Yazdan Hamzavi4
1- Associate Professor, Department of Microbiology, Nosocomial Infection Research Centre, Kermanshah University of Medical Sciences, Kermanshah, Iran
2- M.Sc of Medical Microbiology, Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran , azamelahi202@yahoo.com
3- M.Sc of Medical Microbiology, Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
4- Associate Professor, Department of Parasitology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
Abstract:   (7285 Views)
Background and Objective: Production of beta-lactamase enzymes is the most common mechanism of bacterial resistance against beta-lactam antibiotics. The aim of this study was to determine the antibiotic resistance pattern and the frequency of AmpC genes in Escherichia coli (E.coli) isolated in outpatients.
Methods: In this descriptive-analytical study, 67 isolates of E.coli were investigated from urinary tract infection of outpatients of the largest medical center in Kermanshah, west of Iran. Their susceptibility to ceftriaxone, cefotaxime, ceftazidime, cefoxitin and imipenem antibiotics was determined using disk diffusion. AmpC phenotypic screening was performed using combination disk method (cefoxitin with and without boronic acid). After extraction the bacterial genome, the presence of MOX, CIT, DHA, ACC, EBC and FOX genes were tested by multiplex PCR.
Results: The resistance of 67 E.coli isolated to ceftriaxone, cefotaxime, ceftazidime and cefoxitin was 49.2%, 49.2%, 37.3% and 25.3%, respectively. The 100% of the isolates were sensitive to imipenem. Seventeen (25.3%) and 9 isolates (13.4%) were phenotypically and genotypically positive for AmpC, respectively. The prevalence of CIT, MOX, FOX, DHA and EBC genes was 7.4%, 5.9%, 4.4%, 4.4% and 2.9%, respectively. However, the ACC gene was not found in isolates. Except for significant correlation between AmpC phenotype and MOX gene (P<0.05), no significant statistical relationship was found between phenotype and AmpC genotype. There was a significant correlation between AmpC phenotype and ceftazidime antibiotic (P<0.05). There was a significant correlation between CIT gene and EBC and FOX (P<0.05).
Conclusion: AmpC-producing E.coli isolates cause significant resistance to cephalosporins. One of the current therapeutic options is using of carbapenems. However, the relatively high prevalence and synergistic genes of AmpC in outpatients are a big concern and unfortunately it reflects the fact that these isolates are prevalent in the society.
Keywords: Escherichia coli, Urinary tract infection, AmpC
Full-Text [PDF 368 kb]   (14289 Downloads)    
Type of Study: Original Articles | Subject: Microbiology
References
1. Akya A, Khodadoost M, Rashiditabar E. [Prevalence of blaTEM gene in Escherichia coli isolated from urinary tract infections of outpatients in Kermanshah]. J Zanjan Univ Med Sci. 2013; 21(5): 84-94. [Article in Persian]
2. Japoni-Nejad A, Fardmusavi N, Safari M, Kazemian H, Tabibnejad M, Nobaveh A, et al. [Prevalence of plasmid-mediated AmpC ß-Lactamase genes in clinical isolates of Klebsiella Pneumoniae in Arak city, Iran]. J Isfahan Med Sch. 2013; 31(249): 1285-95. [Article in Persian]
3. Philippon A, Arlet G, Jacoby GA. Plasmid determined AmpC type β-lactamases. Antimicrob Agents Chemother. 2002 Jan; 46(1): 1-11. doi: 10.1128/AAC.46.1.1-11.2002
4. Mansouri S, Chitsaz M, Hajihosseini R, Mirzaee M, Gheini M. [Determination of resistance pattern of plasmid-mediated AmpC]. Daneshvar Medicine. 2009; 16(80): 61-70. [Article in Persian]
5. Manoharan A, Sugumar M, Kumar A, Jose H, Mathai D, Khilnani GC, et al. Phenotypic & molecular characterization of AmpC β-lactamases among Escherichia coli, Klebsiella spp. & Enterobacter spp. from five Indian Medical Centers. Indian J Med Res. 2012 Mar; 135: 359-64.
6. Helmy MM, Wasfi R. Phenotypic and molecular characterization of plasmid mediated AmpC β-lactamases among Escherichia coli, Klebsiella spp., and Proteus mirabilis isolated from urinary tract infections in Egyptian hospitals. Biomed Res Int. 2014; 2014: 171548. doi: 10.1155/2014/171548
7. Yilmaz NO, Agus N, Bozcal E, Oner O, Uzel A. Detection of plasmid-mediated AmpC β-lactamase in Escherichia coli and Klebsiella pneumoniae. Indian J Med Microbiol. 2013 Jan-Mar; 31(1): 53-9. doi: 10.4103/0255-0857.108723
8. Kim J, Lim YM. Prevalence of derepressed ampC mutants and extended-spectrum beta-lactamase producers among clinical isolates of Citrobacter freundii, Enterobacter spp., and Serratia marcescens in Korea: dissemination of CTX-M-3, TEM-52, and SHV-12. J Clin Microbiol. 2005 May; 43(5): 2452-55. doi: 10.1128/JCM.43.5.2452-2455.2005
9. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing. Twenty-Fourth Informational Supplement. M100-S24. 2014 Jan.
10. Coudron PE. Inhibitor-based methods for detection of plasmid-mediated AmpC beta-lactamases in Klebsiella spp., Escherichia coli, and Proteus mirabilis. J Clin Microbiol. 2005 Aug; 43(8): 4163-7. doi: 10.1128/JCM.43.8.4163-4167.2005
11. Li Y, Li Q, Du Y, Jiang X, Tang J, Wang J, et al. Prevalence of plasmid-mediated AmpC beta-lactamases in a Chinese university hospital from 2003 to 2005: first report of CMY-2-Type AmpC beta-lactamase resistance in China. J Clin Microbiol. 2008 Apr; 46(4): 1317-21. doi: 10.1128/JCM.00073-07
12. Stürenburg E, Mack D. Extended-spectrum beta-lactamases: implications for the clinical microbiology laboratory, therapy, and infection control. J Infect. 2003 Nov; 47(4): 273-95.
13. Kalantar D, Mansouri S, Razavi M. [Emergence of imipenem resistance and presence of Metallo-β-Lactamases enzymes in multi drug resistant gram negative Bacilli isolated from clinical samples in Kerman, 2007-2008]. J Kerman Univ Med Sci. 2010 Jun; 17(3): 208-14. [Article in Persian]
14. Dahmen S, Mansour W, Charfi K, Boujaafar N, Arlet G, Bouallègue O. Imipenem resistance in Klebsiella pneumoniae is associated to the combination of plasmid-mediated CMY-4 AmpC β-lactamase and loss of an outer membrane protein. Microb Drug Resist. 2012 Oct; 18(5): 479-83. doi: 10.1089/mdr.2011.0214
15. Tofteland S, Haldorsen B, Dahl KH, Simonsen GS, Steinbakk M, Walsh TR, et al. Effects of phenotype and genotype on methods for detection of extended-spectrum-beta-lactamase-producing clinical isolates of Escherichia coli and Klebsiella pneumoniae in Norway. J Clin Microbiol. 2007 Jan; 45(1): 199-205. doi: 10.1128/JCM.01319-06
16. Drieux L, Brossier F, Sougakoff W, Jarlier V. Phenotypic detection of extended-spectrum beta-lactamase production in Enterobacteriaceae: review and bench guide. Clin Microbiol Infect. 2008 Jan; 14 Suppl 1: 90-103. doi: 10.1111/j.1469-0691.2007.01846.x
17. Soltan dallal MM, Sabbaghi A, Fallah A, Molaaqamirrzaee H, Rstgearlary A, Fard Saneii A. [Detection of beta-lactamase genes bla-SHV and bla-AmpC (CITM, FOX) in clinical isolates of Escherichia coli]. J Med Counc I.R. Iran. 2010; 28(3): 269-76. [Article in Persian]
18. Soltan Dallal MM, Molla Aghamirzaei H, Fallah Mehrabadi J, Rastegar Lari A, Sabbaghi A, Eshraghian MR, et al. [Molecular detection of TEM and AmpC (Dha, mox) broad spectrum β-lactamase in clinical isolates of Escherichia coli]. Tehran Univ Med J. 2010; 68(6): 315-20. [Article in Persian]
19. Olusoga Ogbolu D, Terry Alli OA, Olanipekun LB, Ojo OI, Makinde OO. Faecal carriage of extended-spectrum beta-lactamase (ESBL)-producing commensal Klebsiella pneumoniae and Escherichia coli from hospital out-patients in Southern Nigeria. Afr J Med Med Sci. 2013; 5(3): 97-105. doi: 10.5897/IJMMS12.0005
20. Maleki A, Khosravi A, Ghafourian S, Pakzad I, Hosseini S, Ramazanzadeh R, et al. High Prevalence of AmpC β-Lactamases in Clinical Isolates of Escherichia coli in Ilam, Iran. Osong Public Health Res Perspect. 2015 Jun; 6(3): 201-4. doi: 10.1016/j.phrp.2015.02.001
21. Shayan S, Bokaeian M, Shahraki S. Prevalence and molecular characterization of AmpC-producing clinical isolates of Escherichia coli from southeastern Iran. Microb Drug Resist. 2014 Apr; 20(2): 104-7. doi: 10.1089/mdr.2013.0087
22. Gazouli M, Tzouvelekis LS, Vatopoulos AC, Tzelepi E. Transferable class C beta-lactamases in Escherichia coli strains isolated in Greek hospitals and characterization of two enzyme variants (LAT-3 and LAT-4) closely related to Citrobacter freundii AmpC beta-lactamase. J Antimicrob Chemother. 1998 Oct; 42(4): 419-25.
23. Miró E, Agüero J, Larrosa MN, Fernández A, Conejo MC, Bou G, et al. Prevalence and molecular epidemiology of acquired AmpC β-lactamases and carbapenemases in Enterobacteriaceae isolates from 35 hospitals in Spain. Eur J Clin Microbiol Infect Dis. 2013 Feb; 32(2): 253-59. doi: 10.1007/s10096-012-1737-0
24. Livermore DM, Canton R, Gniadkowski M, Nordmann P, Rossolini GM, et al. CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother. 2007 Feb; 59(2): 165-74. doi: 10.1093/jac/dkl483
25. Yoo JS, Byeon J, Yang J, Yoo JI, Chung GT, Lee YS. High prevalence of extended-spectrum beta-lactamases and plasmid-mediated AmpC beta-lactamases in Enterobacteriaceae isolated from long-term care facilities in Korea. Diagn Microbiol Infect Dis. 2010 Jul; 67(3): 261-65. doi: 10.1016/j.diagmicrobio.2010.02.012
26. Coudron PE, Moland ES, Thomson KS. Occurrence and detection of AmpC beta-lactamases among Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis isolates at a veterans medical center. J Clin Microbiol. 2000 May; 38(5): 1791-96.
Send email to the article author


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Akya A, Elahi A, Chegene Lorestani R, Hamzavi Y. Antibiotic resistance and phenotypically and genotypically AmpC beta-lactamases among Escherichia coli isolates from Outpatients. J Gorgan Univ Med Sci 2018; 20 (4) :108-114
URL: http://goums.ac.ir/journal/article-1-3540-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 20, Issue 4 (12-2018) Back to browse issues page
مجله دانشگاه علوم پزشکی گرگان Journal of Gorgan University of Medical Sciences
Persian site map - English site map - Created in 0.05 seconds with 36 queries by YEKTAWEB 4657