1. Hillegass JM, Shukla A, Lathrop SA, MacPherson MB, Fukagawa NK, Mossman BT. Assessing nanotoxicity in cells in vitro. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010; 2(3): 219-31. doi: 10.1002/wnan.54 2. De Volder MF, Tawfick SH, Baughman RH, Hart AJ. Carbon nanotubes: present and future commercial applications. Science. 2013 Feb; 339(6119): 535-39. doi: 10.1126/science.1222453 3. Yomogida Y, Tanaka T, Zhang M, Yudasaka M, Wei X, Kataura H. Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging. Nat Commun. 2016 Jun; 7: 12056. doi: 10.1038/ncomms12056 4. Vlastou E, Gazouli M, Ploussi A, Platoni K, Efstathopoulos EP. Nanoparticles: nanotoxicity aspects. J Phys Conf Ser. 2017; 931(17): 012020. doi: 10.1088/1742-6596/931/1/012020 5. Lacerda L, Bianco A, Prato M, Kostarelos K. Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv Drug Deliv Rev. 2006 Dec; 58(14): 1460-70. doi: 10.1016/j.addr.2006.09.015 6. Abdal Dayem A, Hossain MK, Lee SB, Kim K, Saha SK, Yang GM, et al. The Role of Reactive Oxygen Species (ROS) in the Biological Activities of Metallic Nanoparticles. Int J Mol Sci. 2017 Jan; 18(1) pii: E120. doi: 10.3390/ijms18010120 7. Prakash S, Malhotra M, Shao W, Tomaro-Duchesneau C, Abbasi S. Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy. Adv Drug Deliv Rev. 2011 Nov; 63(14-15): 1340-51. doi: 10.1016/j.addr.2011.06.013 8. Yang ST, Wang X, Jia G, Gu Y, Wang T, Nie H, et al. Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicol Lett. 2008 Oct; 181(3): 182-9. doi: 10.1016/j.toxlet.2008.07.020 9. Clichici S, Biris AR, Tabaran F, Filip A. Transient oxidative stress and inflammation after intraperitoneal administration of multiwalled carbon nanotubes functionalized with single strand DNA in rats. Toxicol Appl Pharmacol. 2012 Mar; 259(3): 281-92. doi: 10.1016/j.taap.2012.01.004 10. Schipper ML, Nakayama-Ratchford N, Davis CR, Shi Kam NW, Chu P, Liu Z, et al. A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nature Nanotechnology. 2008; 3(8): 216-21. 11. Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GA, Webb TR. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci. 2004 Jan; 77(1): 117-25. doi: 10.1093/toxsci/kfg228 12. Jain S, Thakare VS, Das M, Godugu C, Jain AK, Mathur R, et al. Toxicity of multiwalled carbon nanotubes with end defects critically depends on their functionalization density. Chem Res Toxicol. 2011 Nov; 24(11): 2028-39. doi: 10.1021/tx2003728 13. Sharma M, Nikota J, Halappanavar S, Castranova V, Rothen-Rutishauser B, Clippinger AJ. Predicting pulmonary fibrosis in humans after exposure to multi-walled carbon nanotubes (MWCNTs). Arch Toxicol. 2016 Jul; 90(7): 1605-22. doi: 10.1007/s00204-016-1742-7 14. Ong LC, Chung FF, Tan YF, Leong CO. Toxicity of single-walled carbon nanotubes. Arch Toxicol. 2016 Jan; 90(1): 103-18. doi: 10.1007/s00204-014-1376-6 15. Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol. 2008 Jul; 3(7): 423-28. doi: 10.1038/nnano.2008.111 16. Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, et al. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. PNAS 2006 Feb; 103(9): 3357-62. https://doi.org/10.1073/pnas.0509009103 17. Shvedova AA, Kisin ER, Murray AR, Kommineni C, Castranova V, Fadeel B. Increased accumulation of neutrophils and decreased fibrosis in the lung of NADPH oxidase-deficient C57BL/6 mice exposed to carbon nanotubes. Toxicol Appl Pharmacol. 2008 Sep; 231(2): 235-40. doi: 10.1016/j.taap.2008.04.018 18. Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain. 1983 Jun; 16(2): 109-10. 19. Heidari-Rarani M, Noori A, Ghodousi A. Effects of methamphetamine on pituitary gonadal axis and spermatogenesis in mature male rats. Zahedan J Res Med Sci. 2014; 16(12): 35-40. 20. Zhao X, Liu R. Recent progress and perspectives on the toxicity of carbon nanotubes at organism, organ, cell, and biomacromolecule levels. Environ Int. 2012 Apr; 40: 244-55. doi: 10.1016/j.envint.2011.12.003 21. Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X, et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nature Nanotechnology. 2007; 2: 47-52. 22. Muller J, Decordier I, Hoet PH, Lombaert N, Thomassen L, Huaux F, et al. Clastogenic and aneugenic effects of multi-wall carbon nanotubes in epithelial cells. Carcinogenesis. 2008 Feb; 29(2): 427-33. doi: 10.1093/carcin/bgm243 23. Lacerda L, Ali-Boucetta H, Herrero MA, Pastorin G, Bianco A, Prato M, et al. Tissue histology and physiology following intravenous administration of different types of functionalized multiwalled carbon nanotubes. Nanomedicine (Lond). 2008 Apr; 3(2): 149-61. doi: 10.2217/17435889.3.2.149 24. Wang J, Sun P, Bao Y, Liu J, An L. Cytotoxicity of single-walled carbon nanotubes on PC12 cells. Toxicol In Vitro. 2011 Feb; 25(1): 242-50. doi: 10.1016/j.tiv.2010.11.010 25. Ge C, Du J, Zhao L, Wang L, Liu Y, Li D, et al. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. PNAS 2011; 108(41): 16968-73. https://doi.org/10.1073/pnas. 1105270108 26. Smart SK, Cassady AI, Lu GQ, Martin DJ. The biocompatibility of carbon nanotubes. Carbon. 2006; 44(6): 1034-47. https://doi.org/10.1016/j.carbon.2005.10.011
|