1. Coffey VG, Hawley JA. The molecular bases of training adaptation. Sports Medicine. 2007; 37(9): 737-63. doi: 10.2165/00007256-200737090-00001 2. Hawley JA. Molecular responses to strength and endurance training: are they incompatible? Appl Physiol Nutr Metab. 2009 Jun; 34(3): 355-61. doi: 10.1139/H09-023 3. Fyfe JJ, Bishop DJ, Stepto NK. Interference between concurrent resistance and endurance exercise: molecular bases and the role of individual training variables. Sports Med. 2014 Jun; 44(6): 743-62. doi: 10.1007/s40279-014-0162-1 4. Makanae Y, Ogasawara R, Fujita S. Skeletal muscle signaling response to concurrent endurance and resistance exercise. J Phys Fit Sports Med. 2015 May; 4(2): 217-21. https://doi.org/10.7600/jpfsm.4.217 5. Wilson JM, Marin PJ, Rhea MR, Wilson SM, Loenneke JP, Anderson JC. Concurrent training: a meta-analysis examining interference of aerobic and resistance exercises. J Strength Cond Res. 2012 Aug; 26(8): 2293-307. doi: 10.1519/JSC.0b013e31823a3e2d 6. Apró W, Wang L, Pontén M, Blomstrand E, Sahlin K. Resistance exercise induced mTORC1 signaling is not impaired by subsequent endurance exercise in human skeletal muscle. Am J Physiol Endocrinol Metab. 2013 Jul; 305(1): E22-32. doi: 10.1152/ajpendo.00091.2013 7. Apró W, Moberg M, Hamilton DL, Ekblom B, van Hall G, Holmberg HC, et al. Resistance exercise-induced S6K1 kinase activity is not inhibited in human skeletal muscle despite prior activation of AMPK by high-intensity interval cycling. Am J Physiol Endocrinol Metab. 2015 Mar; 308(6): E470-81. doi: 10.1152/ajpendo.00486.2014 8. Fyfe JJ, Bishop DJ, Zacharewicz E, Russell AP, Stepto NK. Concurrent exercise incorporating high-intensity interval or continuous training modulates mTORC1 signaling and microRNA expression in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2016 Jun; 310(11): R1297-311. doi: 10.1152/ajpregu.00479.2015 9. Lundberg TR, Fernandez-Gonzalo R, Gustafsson T, Tesch PA. Aerobic exercise alters skeletal muscle molecular responses to resistance exercise. Med Sci Sports Exerc. 2012 Sep; 44(9): 1680-88. doi: 10.1249/MSS.0b013e318256fbe8 10. Lundberg TR, Fernandez-Gonzalo R, Tesch PA. Exercise-induced AMPK activation does not interfere with muscle hypertrophy in response to resistance training in men. J Appl Physiol (1985). 2014 Mar; 116(6): 611-20. doi: 10.1152/japplphysiol.01082.2013 11. Kazior Z, Willis SJ, Moberg M, Apró W, Calbet JA, Holmberg HC, et al. Endurance Exercise Enhances the Effect of Strength Training on Muscle Fiber Size and Protein Expression of Akt and mTOR. PLoS One. 2016 Feb; 11(2): e0149082. doi: 10.1371/journal.pone.0149082 12. Lundberg TR, Fernandez-Gonzalo R, Gustafsson T, Tesch PA. Aerobic exercise does not compromise muscle hypertrophy response to short-term resistance training. J Appl Physiol (1985). 2013 Jan; 114(1): 81-89. doi: 10.1152/japplphysiol.01013.2012 13. Sengupta S, Peterson TR, Sabatini DM. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell. 2010 Oct; 40(2): 310-22. doi: 10.1016/j.molcel.2010.09.026 14. Kudchodkar SB, Yu Y, Maguire TG, Alwine JC. Human cytomegalovirus infection induces rapamycin-insensitive phosphorylation of downstream effectors of mTOR kinase. J Virol. 2004 Oct; 78(20): 11030-39. doi: 10.1128/JVI.78.20.11030-11039.2004 15. Baar K, Esser K. Phosphorylation of p70(S6k) correlates with increased skeletal muscle mass following resistance exercise. Am J Physiol. 1999 Jan; 276(1): C120-27. doi: 10.1152/ajpcell.1999.276.1.C120 16. Ogasawara R, Kobayashi K, Tsutaki A, Lee K, Abe T, Fujita S, et al. mTOR signaling response to resistance exercise is altered by chronic resistance training and detraining in skeletal muscle. J Appl Physiol (1985). 2013 Apr; 114(7): 934-40. doi: 10.1152/japplphysiol.01161.2012 17. Winder WW, Taylor EB, Thomson DM. Role of AMP-activated protein kinase in the molecular adaptation to endurance exercise. Med Sci Sports Exerc. 2006 Nov; 38(11): 1945-49. doi: 10.1249/01.mss.0000233798.62153.50 18. Thomson DM, Fick CA, Gordon SE. AMPK activation attenuates S6K1, 4E-BP1, and eEF2 signaling responses to high-frequency electrically stimulated skeletal muscle contractions. J Appl Physiol (1985). 2008 Mar; 104(3): 625-32. doi: 10.1152/japplphysiol.00915.2007 19. Coffey VG, Jemiolo B, Edge J, Garnham AP, Trappe SW, Hawley JA. Effect of consecutive repeated sprint and resistance exercise bouts on acute adaptive responses in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2009 Nov; 297(5): R1441-51. doi: 10.1152/ajpregu.00351.2009 20. De Souza EO, Tricoli V, Junior CB, Pereira MG, Brum PC, Oliveria EM, et al. The acute effects of strength, endurance and concurrent exercises on the Akt/mTOR/p70S6K1 and AMPK signaling pathway responses in rat skeletal muscle. Braz J Med Biol Res. 2013 Apr; 46(4): 343-47. doi: 10.1590/1414-431X20132557 21. Pugh JK, Faulkner SH, Jackson AP, King JA, Nimmo MA. Acute molecular responses to concurrent resistance and high-intensity interval exercise in untrained skeletal muscle. Physiol Rep. 2015 Apr; 3(4) pii: e12364. doi: 10.14814/phy2.12364 22. Fernandez-Gonzalo R, Lundberg TR, Tesch PA. Acute molecular responses in untrained and trained muscle subjected to aerobic and resistance exercise training versus resistance training alone. Acta Physiol (Oxf). 2013 Dec; 209(4): 283-94. doi: 10.1111/apha.12174 23. Ogasawara R, Sato K, Matsutani K, Nakazato K, Fujita S. The order of concurrent endurance and resistance exercise modifies mTOR signaling and protein synthesis in rat skeletal muscle. Am J Physiol Endocrinol Metab. 2014 May; 306(10): E1155-62. doi: 10.1152/ajpendo.00647.2013 24. Antonio-Santos J, Ferreira DJ, Gomes Costa GL, Matos RJ, Toscano AE, Manhães-de-Castro R, et al. Resistance Training Alters the Proportion of Skeletal Muscle Fibers but Not Brain Neurotrophic Factors in Young Adult Rats. J Strength Cond Res. 2016 Dec; 30(12): 3531-38. doi: 10.1519/JSC.0000000000001449 25. Calegari VC, Zoppi CC, Rezende LF, Silveira LR, Carneiro EM, Boschero AC. Endurance training activates AMP-activated protein kinase, increases expression of uncoupling protein 2 and reduces insulin secretion from rat pancreatic islets. J Endocrinol. 2011 Mar; 208(3): 257-64. doi: 10.1530/JOE-10-0450 26. Robineau J, Babault N, Piscione J, Lacome M, Bigard AX. Specific Training Effects of Concurrent Aerobic and Strength Exercises Depend on Recovery Duration. J Strength Cond Res. 2016 Mar; 30(3): 672-83. doi: 10.1519/JSC.0000000000000798 27. Atherton PJ, Smith K. Muscle protein synthesis in response to nutrition and exercise. J Physiol. 2012 Mar; 590(Pt 5): 1049-57. doi: 10.1113/jphysiol.2011.225003 28. Hamilton DL, Philp A. Can AMPK mediated suppression of mTORC1 explain the concurrent training effect? Cell Mol Exerc Physiol. 2013; 2(1): e4. 29. Inoki K, Li Y, Xu T, Guan KL. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 2003 Aug; 17(15): 1829-34. doi: 10.1101/gad.1110003 30. Dreyer HC, Fujita S, Cadenas JG, Chinkes DL, Volpi E, Rasmussen BB. Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle. J Physiol. 2006 Oct; 576(Pt 2): 613-24. doi: 10.1113/jphysiol.2006.113175
|