[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 21, Issue 4 (Winter 2020) ::
J Gorgan Univ Med Sci 2020, 21(4): 53-59 Back to browse issues page
Effect of resistance training on FOXO1 gene expression in subcutaneous fatty tissue in diabetic wistar rats
Shahram Sohaily * 1, Mojtaba Eizadi2 , Daniel Tarmast3
1- Assistant Professor of Exercise Physiology, Safadasht Branch, Islamic Azad University, Tehran, Iran , shsohaily@yahoo.com
2- Assistant Professor of Exercise Physiology, Faculty of Humanities, Saveh Branch, Islamic Azad University, Saveh, Iran
3- Assistant Professor of Exercise Physiology, Faculty of Humanities, Parand Branch, Islamic Azad University, Tehran, Iran
Abstract:   (994 Views)
Background and Objective: Hormone and genetic disorders are the most important causes of hyperglycemia in obese and diabetes patients. This study was done to determine the effect of the resistance training program on FOXO1 gene expression in subcutaneous adipose tissue as an effective transcription factor in insulin signaling pathways, fasting glucose and insulin resistance in type 2 diabetic rats.
Methods: In this experimental study, type 2 diabetes induced by high fat diet and Streptozotocin (STZ, 30 mg/kg/bw) intraperitoneal injection in 14 male wistar rats (220±20 g) .Animals were randomly allocated into exercise (n=7) and control (n=7) groups. Exercise group were participated in resistance training program (6 weeks, 5 days/weekly). Fasting blood glucose and insulin as well FOXO1 gene expression in subcutaneous adipose tissue were measured lasted exercise session in the two geoups.
Results: Resistance training  significantly reduces in fasting glucose, insulin resistance and FOXO1 gene expression in subcutaneous adipose tissue in exercise group in compared to control group (P<0.05).
Conclusion: Resistance training lead to decrease of insulin resistance and blood glucose by inhibiting FOXO1 gene expression in subcutaneous adipose tissue in diabetic rats.
Keywords: Resistance training, FOXO1 gene, Fasting glucose, Type 2 diabetes
Full-Text [PDF 255 kb]   (167 Downloads)    
Type of Study: Original Articles | Subject: Exercise Physiology
References
1. Lazar MA. How obesity causes diabetes: not a tall tale. Science. 2005 Jan; 307(5708): 373-75. doi: 10.1126/science.1104342
2. Ruchat SM, Rankinen T, Weisnagel SJ, Rice T, Rao DC, Bergman RN, et al. Improvements in glucose homeostasis in response to regular exercise are influenced by the PPARG Pro12Ala variant: results from the HERITAGE Family Study. Diabetologia. 2010 Apr; 53(4): 679-89. doi: 10.1007/s00125-009-1630-2
3. Kamagate A, Kim DH, Zhang T, Slusher S, Gramignoli R, Strom SC, et al. FoxO1 links hepatic insulin action to endoplasmic reticulum stress. Endocrinology. 2010 Aug; 151(8): 3521-35. doi: 10.1210/en.2009-1306
4. Kawano Y, Nakae J, Watanabe N, Fujisaka S, Iskandar K, Sekioka R, et al. Loss of Pdk1-Foxo1 signaling in myeloid cells predisposes to adipose tissue inflammation and insulin resistance. Diabetes. 2012 Aug; 61(8): 1935-48. doi: 10.2337/db11-0770
5. Schick EE, McLoughlin TJ, Lee A, Pizza FX, Dong F, Komuniecki P. The effect of FoxO1 on glycemic control and skeletal muscle glucose uptake and lipid metabolism. Dissertation. Ph.D for Exercise Science. College of Graduate Studies. The University of Toledo. 2014.
6. Jing E, Gesta S, Kahn CR. SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metab. 2007 Aug; 6(2): 105-14. doi: 10.1016/j.cmet.2007.07.003
7. Calnan DR, Brunet A. The FoxO code. Oncogene. 2008 Apr; 27(16): 2276-88. doi: 10.1038/onc.2008.21
8. Chakrabarti P, Kandror KV. FoxO1 controls insulin-dependent adipose triglyceride lipase (ATGL) expression and lipolysis in adipocytes. J Biol Chem. 2009 May; 284(20): 13296-300. doi: 10.1074/jbc.C800241200
9. Fan W, Imamura T, Sonoda N, Sears DD, Patsouris D, Kim JJ, Olefsky JM. FOXO1 transrepresses peroxisome proliferator-activated receptor gamma transactivation, coordinating an insulin-induced feed-forward response in adipocytes. J Biol Chem. 2009 May; 284(18): 12188-97. doi: 10.1074/jbc.M808915200
10. Xu Y, Jin B, Sun L, Yang H, Cao X, Zhang G. The expression of FoxO1 in placenta and omental adipose tissue of gestational diabetes mellitus. Exp Clin Endocrinol Diabetes. 2014 May; 122(5): 287-94. doi: 10.1055/s-0034-1371830
11. Sanchez AM. FoxO transcription factors and endurance training: a role for FoxO1 and FoxO3 in exercise-induced angiogenesis. J Physiol. 2015 Jan; 593(Pt 2): 363-64.
12. Slopack D, Roudier E, Liu ST, Nwadozi E, Birot O, Haas TL. Forkhead BoxO transcription factors restrain exercise-induced angiogenesis. J Physiol. 2014 Sep; 592(18): 4069-82. doi: 10.1113/jphysiol.2014.275867
13. Azad M, Khaledi N, Hedayati M. Effect of acute and chronic eccentric exercise on FOXO1 mRNA expression as fiber type transition factor in rat skeletal muscles. Gene. 2016 Jun; 584(2): 180-84. doi: 10.1016/j.gene.2016.02.033
14. Sun YP, Lu NC, Parmley WW, Hollenbeck CB. Effects of cholesterol diets on vascular function and atherogenesis in rabbits. Proc Soc Exp Biol Med. 2000 Jul; 224(3): 166-71. doi: 10.1046/j.1525-1373.2000.22416.x
15. Eizadi M, Soory r, Ravasi A, Baesy K, Choobineh S. [Relationship between TCF7L2 Relative Expression in Pancreas Tissue with Changes in Insulin by High Intensity Interval Training (HIIT) in Type 2 Diabetes Rats]. J Shahid Sadoughi Uni Med Sci. 2015; 24(12): 981-93. [Article in Persian]
16. Banitalebi E, Gharakhanlou R, Ghatreh-Samani K, Mohammad-Amoli M, Teimori H. [The effect of resistance training on plasma and skeletal muscles sphingosine-1-phosphate levels of male Wistar rat]. J Shahrekord Univ Med Sci. 2012; 14(1): 1-10. [Article in Persian]
17. Panahi S, Agha-Alinejad H, Gharakhanloo R, Fayazmilani R, Hedayati M, Safarzadeh A, et al. The Effect of 4 Weeks Resistance Training on Murf1 Gene Expression and Muscle Atrophy in Diabetic Wistar Rats. Med J Tabriz Uni Med Sciences Health Services. 2016; 38(2): 6-13.
18. McAuley KA, Williams SM, Mann JI, Walker RJ, Lewis-Barned NJ, Temple LA, et al. Diagnosing insulin resistance in the general population. Diabetes Care. 2001 Mar; 24(3): 460-64. doi: 10.2337/diacare.24.3.460
19. Coughlin CC, Finck BN, Eagon JC, Halpin VJ, Magkos F, Mohammed BS, et al. Effect of marked weight loss on adiponectin gene expression and plasma concentrations. Obesity (Silver Spring). 2007 Mar; 15(3): 640-45. doi: 10.1038/oby.2007.556
20. Sheu WH, Chang TM, Lee WJ, Ou HC, Wu CM, Tseng LN, et al. Effect of weight loss on proinflammatory state of mononuclear cells in obese women. Obesity (Silver Spring). 2008 May; 16(5): 1033-38. doi: 10.1038/oby.2008.37
21. Goldhaber-Fiebert JD, Goldhaber-Fiebert SN, Tristán ML, Nathan DM. Randomized controlled community-based nutrition and exercise intervention improves glycemia and cardiovascular risk factors in type 2 diabetic patients in rural Costa Rica. Diabetes Care. 2003 Jan; 26(1): 24-29. doi: 10.2337/diacare.26.1.24
22. Abd El-Kader S, Gari A, Salah El-Den A. Impact of moderate versus mild aerobic exercise training on inflammatory cytokines in obese type 2 diabetic patients: a randomized clinical trial. Afr Health Sci. 2013 Dec; 13(4): 857-63. doi: 10.4314/ahs.v13i4.1
23. Lopes WA, Leite N, da Silva LR, Brunelli DT, Gáspari AF, Radominski RB, et al. Effects of 12 weeks of combined training without caloric restriction on inflammatory markers in overweight girls. J Sports Sci. 2016 Oct; 34(20): 1902-12. doi: 10.1080/02640414.2016.1142107
24. Samjoo IA, Safdar A, Hamadeh MJ, Raha S, Tarnopolsky MA. The effect of endurance exercise on both skeletal muscle and systemic oxidative stress in previously sedentary obese men. Nutr Diabetes. 2013 Sep; 3(9): e88. doi: 10.1038/nutd.2013.30
25. Kitamura YI, Kitamura T, Kruse JP, Raum JC, Stein R, Gu W, Accili D. FoxO1 protects against pancreatic beta cell failure through NeuroD and MafA induction. Cell Metab. 2005 Sep; 2(3): 153-63. doi: 10.1016/j.cmet.2005.08.004
26. Kitamura T, Nakae J, Kitamura Y, Kido Y, Biggs WH 3rd, Wright CV, et al. The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic beta cell growth. J Clin Invest. 2002 Dec; 110(12): 1839-47. doi: 10.1172/JCI16857
27. Nakae J, Cao Y, Hakuno F, Takemori H, Kawano Y, Sekioka R, et al. Novel repressor regulates insulin sensitivity through interaction with Foxo1. EMBO J. 2012 May; 31(10): 2275-95. doi: 10.1038/emboj.2012.97
28. Pang WJ, Yu TY, Bai L, Yang YJ, Yang GS. Tissue expression of porcine FoxO1 and its negative regulation during primary preadipocyte differentiation. Mol Biol Rep. 2009 Jan; 36(1): 165-76. doi: 10.1007/s11033-007-9163-6
29. Ito Y, Daitoku H, Fukamizu A. Foxo1 increases pro-inflammatory gene expression by inducing C/EBPbeta in TNF-alpha-treated adipocytes. Biochem Biophys Res Commun. 2009 Jan; 378(2): 290-95. doi: 10.1016/j.bbrc.2008.11.043
30. Su D, Coudriet GM, Hyun Kim D, Lu Y, Perdomo G, Qu S, et al. FoxO1 links insulin resistance to proinflammatory cytokine IL-1beta production in macrophages. Diabetes. 2009 Nov; 58(11): 2624-33. doi: 10.2337/db09-0232
Send email to the article author


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sohaily S, Eizadi M, Tarmast D. Effect of resistance training on FOXO1 gene expression in subcutaneous fatty tissue in diabetic wistar rats. J Gorgan Univ Med Sci. 2020; 21 (4) :53-59
URL: http://goums.ac.ir/journal/article-1-3495-en.html


Volume 21, Issue 4 (Winter 2020) Back to browse issues page
مجله علمی دانشگاه علوم پزشکی گرگان Journal of Gorgan University of Medical Sciences
Persian site map - English site map - Created in 0.06 seconds with 31 queries by YEKTAWEB 4111