[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Editorial Board::
Executive Members::
Instruction to Authors::
Peer Review::
Articles Archive::
Indexing Databases::
Contact Us::
Site Facilities::
::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
:: Volume 21, Issue 2 (7-2019) ::
J Gorgan Univ Med Sci 2019, 21(2): 43-49 Back to browse issues page
Effect of high intensity interval and continuous endurance training on TRF2 and TERT gene expression in heart tissue of aging male rats
Arezoo Eskandari1 , Mohamad Fashi * 2, Amir Bahador Dakhili3
1- Ph.D in Exercise Physiology, Tehran University, Tehran, Iran
2- Assistant Professor, Department of Physical Education and Sports Sciences, Shahid Beheshti University, Tehran, Iran , m_fashi@sbu.ac.ir
3- Ph.D in Exercise Physiology, Tarbiat Modares University, Tehran, Iran
Abstract:   (10422 Views)

Background and Objective: Age is the greatest risk factor for cardiovascular disease that is associated with shortens telomere. TRF2 and TERT genes expression in heart tissue   reduce in elderly. These geness are associated with shortens telomere. Exercise can play a useful role in maintaining the length of telomeres. This study was carry out to determine the effect of high intensity interval training (HIIT) and continuous endurance training on TRF2 and TERT gene expression in heart tissue of aged male rats.

Methods: In this experimental study 24 adult aged male rats (88-96 weeks, 363±12 g) allocated into three groups including control, endurance training (5 sessions per week: with 60-70 of maximum speed of group) and HIIT (5 sessions per week: 80 percent in the first and second week, 90% maximum speed of the third week, 100 % until the end of the exercise for 6 weeks). Gene expression of TRF2 and TERT were assessment by Real-time - PCR and the quantification of gene expression levels using the Pfaffl formula.

Results: TRF2 gene significantly increased in HIIT and CET groups in compared to control group (P<0.05). TERT gene non- significantly increased in HIIT and CET groups in compared to the control group.

Conclusion: It seems, 6 weeks of high-intensity interval training and continuous endurance training to be able regulate the growth and longevity of the heart cells by maintaining the length telomere by increasing TRF2 gene expression.

Keywords: High intensity interval training, Continuous endurance training, TRF2 gene, TERT gene, Aging, Rats
Full-Text [PDF 264 kb]   (15245 Downloads)    
Type of Study: Original Articles | Subject: Exercise Physiology
References
1. Dominguez LJ, Galioto A, Ferlisi A, Pineo A, Putignano E, Belvedere M, et al. Ageing, lifestyle modifications, and cardiovascular disease in developing countries. J Nutr Health Aging. 2006 Mar-Apr; 10(2): 143-49.
2. Kitzman DW. Diastolic heart failure in the elderly. Heart Fail Rev. 2002 Jan; 7(1): 17-27.
3. Wong LSM, van der Harst P, de Boer RA, Huzen J, van Gilst WH, van Veldhuisen DJ. Aging, telomeres and heart failure. Heart Fail Rev. 2010 Sep; 15(5): 479-86. doi: 10.1007/s10741-010-9173-7
4. Samani NJ, van der Harst P. Biological ageing and cardiovascular disease. Heart. 2008 May; 94(5): 537-39. doi: 10.1136/hrt.2007.136010
5. Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature. 1990 May; 345 (6274): 458-60. doi: 10.1038/345458a0
6. de Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 2005 Sep; 19 (18): 2100-10.
7. Chuaire L. Telomere and Telomerase: brief review of a history initiated by Hermann Müller and Barbara McClintock. Colombia Medica. 2006; 37(4): 336-39.
8. Honda S, Hjelmeland LM, Handa JT. Senescence associated beta galactosidase activity in human retinal pigment epithelial cells exposed to mild hyperoxia in vitro. Br J Ophthalmol. 2002 Feb; 86(2): 159-62.
9. Kimura M, Cherkas LF, Kato BS, Demissie S, Hjelmborg JB, Brimacombe M, et al. Offspring's leukocyte telomere length, paternal age, and telomere elongation in sperm. PLoS Genet. 2008 Feb; 4(2): e37. doi: 10.1371/journal.pgen.0040037
10. Giardini MA, Segatto M, da Silva MS, Nunes VS, Cano MI. Telomere and telomerase biology. Prog Mol Biol Transl Sci. 2014; 125: 1-40. doi: 10.1016/B978-0-12-397898-1.00001-3
11. Monaghan P, Eisenberg DTA, Harrington L, Nussey D. Understanding diversity in telomere dynamics. Philos Trans R Soc Lond B Biol Sci. 2018 Mar; 373 (1741). pii: 20160435. doi: 10.1098/rstb.2016.0435
12. Young AJ. The role of telomeres in the mechanisms and evolution of life-history trade-offs and ageing. Philos Trans R Soc Lond B Biol Sci. 2018 Mar; 373(1741). pii: 20160452. doi: 10.1098/rstb.2016.0452
13. Haver VG, Mateo Leach I, Kjekshus J, Fox JC, Wedel H, Wikstrand J, et al. Telomere length and outcomes in ischaemic heart failure: data from the Controlled Rosuvastat in multinational Trial in Heart Failure (CORONA). Eur J Heart Fail. 2015 Mar; 17(3): 313-19. doi: 10.1002/ejhf.237
14. Roth SM. Physical Activity May Improve Aging Through Impacts on Telomere Biology. Kinesiology Review. 2015; 4(1): 99-106. https://doi.org/10.1123/kr.2014-0083
15. Ascensão A, Ferreira R, Magalhães J. Exercise-induced cardioprotection--biochemical, morphological and functional evidence in whole tissue and isolated mitochondria. Int J Cardiol. 2007 Apr; 117(1): 16-30. doi: 10.1016/j.ijcard.2006.04.076
16. Stewart KJ. Exercise training and the cardiovascular consequences of type 2 diabetes and hypertension: plausible mechanisms for improving cardiovascular health. JAMA. 2002 Oct; 288 (13): 1622-31.
17. Rae DE, Vignaud A, Butler-Browne GS, Thornell LE, Sinclair-Smith C, Derman EW, et al. Skeletal muscle telomere length in healthy, experienced, endurance runners. Eur J Appl Physiol. 2010 May; 109(2): 323-30. doi: 10.1007/s00421-010-1353-6
18. Renault V, Piron-Hamelin G, Forestier C, DiDonna S, Decary S, Hentati F, et al. Skeletal muscle regeneration and the mitotic clock. Exp Gerontol. 2000 Sep; 35 (6-7): 711-19.
19. Werner C, Hanhoun M, Widmann T, Kazakov A, Semenov A, Pöss J, et al. Effects of physical exercise on myocardial telomere-regulating proteins, survival pathways, and apoptosis. J Am Coll Cardiol. 2008 Aug; 52(6): 470-82. doi: 10.1016/j.jacc.2008.04.034
20. Ludlow AT, Witkowski S, Marshall MR, Wang J, Lima LC, Guth LM, et al. Chronic exercise modifies age-related telomere dynamics in a tissue-specific fashion. J Gerontol A Biol Sci Med Sci. 2012 Sep; 67(9): 911-26. doi: 10.1093/gerona/gls002
21. Akbari H, Maleki MJ, Ravasi AA, Kordi MR, Dizaji A, Miri SM, et al. [The effect of an endurance training period with cellular Anti-aging purpose on telomerase enzyme activity in cardiac tissue and peripheral blood lymphocytes in male rats]. J Med Counc I.R. Iran. 2014; 31(4): 315-28. [Article in Persian]
22. Behmenburg F, Heinen A, Bruch LV, Hollmann MW, Huhn R. Cardioprotection by Remote Ischemic Preconditioning is Blocked in the Aged Rat Heart in Vivo. J Cardiothorac Vasc Anesth. 2017 Aug; 31(4): 1223-26. doi: 10.1053/j.jvca.2016.07.005
23. Rezaei R, Nourshahi M, Khodagholi F, Haghparast A, Nasoohi S, Bigdeli M, et al. Differential impact of treadmill training on stroke-induced neurological disorders. Brain Inj. 2017; 31(13-14): 1910-17. doi: 10.1080/02699052.2017.1346287
24. Oh H, Taffet GE, Youker KA, Entman ML, Overbeek PA, Michael LH, et al. Telomerase reverse transcriptase promotes cardiac muscle cell proliferation, hypertrophy, and survival. Proc Natl Acad Sci U S A. 2001 Aug; 98(18): 10308-13. doi: 10.1073/pnas.191169098
25. van Steensel B, Smogorzewska A, de Lange T. TRF2 protects human telomeres from end-to-end fusions. Cell. 1998 Feb; 92(3): 401-13.
26. Leri A, Franco S, Zacheo A, Barlucchi L, Chimenti S, Limana F, et al. Ablation of telomerase and telomere loss leads to cardiac dilatation and heart failure associated with p53 upregulation. EMBO J. 2003 Jan; 22(1): 131-39. doi: 10.1093/emboj/cdg013
27. Fakhrzadeh H, Sharifi F. [Cardiovascular diseases in the elderly]. J Gorgan Univ Med Sci. 2012; 14(3): 1-9. [Article in Persian]
28. Arsenis NC, You T, Ogawa EF, Tinsley GM, Zuo L. Physical activity and telomere length: Impact of aging and potential mechanisms of action. Oncotarget. 2017 Jul; 8(27): 45008-19. doi: 10.18632/oncotarget.16726
29. Mundstock E, Zatti H, Louzada FM, Oliveira SG, Guma FT, Paris MM, et al. Effects of physical activity in telomere length: systematic review and meta-analysis. Ageing Research Reviews. 2015 Jul; 22: 72-80. https://doi.org/10.1016/j.arr.2015.02.004
30. Prasad KN, Wu M, Bondy SC. Telomere shortening during aging: Attenuation by antioxidants and anti-inflammatory agents. Mech Ageing Dev. 2017 Jun; 164: 61-66. doi: 10.1016/j.mad.2017.04.004
31. Sallam N, Laher I. Exercise modulates oxidative stress and inflammation in aging and cardiovascular diseases. Oxid Med Cell Longev. 2016; 2016: 7239639. doi: 10.1155/2016/7239639
32. Robin JD, Ludlow AT, Batten K, Gaillard MC, Stadler G, Magdinier F, et al. SORBS2 transcription is activated by telomere position effect-over long distance upon telomere shortening in muscle cells from patients with facioscapulohumeral dystrophy. Genome Res. 2015 Dec; 25(12): 1781-90. doi: 10.1101/gr.190660.115
33. Ludlow AT, Gratidão L, Ludlow LW, Spangenburg EE, Roth SM. Acute exercise activates p38 MAPK and increases the expression of telomere-protective genes in cardiac muscle. Exp Physiol. 2017 Apr; 102(4): 397-410. doi: 10.1113/EP086189
34. Rose BA, Force T, Wang Y. Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev. 2010 Oct; 90(4): 1507-46. doi: 10.1152/physrev.00054.2009
Send email to the article author


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Eskandari A, Fashi M, Dakhili A B. Effect of high intensity interval and continuous endurance training on TRF2 and TERT gene expression in heart tissue of aging male rats. J Gorgan Univ Med Sci 2019; 21 (2) :43-49
URL: http://goums.ac.ir/journal/article-1-3309-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 21, Issue 2 (7-2019) Back to browse issues page
مجله دانشگاه علوم پزشکی گرگان Journal of Gorgan University of Medical Sciences
Persian site map - English site map - Created in 0.06 seconds with 36 queries by YEKTAWEB 4660
Creative Commons License
This work is licensed under a Creative Commons — Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)