Search published articles


Showing 2 results for Children Ever Born

Arezoo Bagheri, Mahsa Saadati,
Volume 3, Issue 2 (10-2015)
Abstract

Background and Objective: Discriminant analysis and logistic regression are classical methods for classifying data in several studies. However, these models do not lead in valid results due to not meeting all necessary assumptions. The purpose of this study was to classify the number of Children Ever Born (CEB) using decision tree model in order to present an efficient method to classify demographic data.

Methods: In the present study, CART tree model with Gini splitting rule was fitted to classify the number of CEB in fertility behavior of at least once married 15-49 year-old women, in Semnan-2012. 405 women aged 15-49 years old comprised the survey sample.

Results: Women in first and second birth cohorts who had married at an early age had 3 CEB while women who had married at an older age had 2 CEB. Women in third birth cohort who had married at an early age and were employed, had 2 CEB while unemployed women in this cohort whose type of marriages were familial and non-familial had 0 and 1 CEB respectively. Women in the third birth cohort who were married in older age had 1 CEB.

Conclusion: Among important advantages of CART model are the simplicity in interpretation, using distribution-free measures, considering missing data and outliers for construction trees which has increased the usage of this method. Therefore, this method is a suitable way for classifying demographic data in comparison to other classical modeling methods in the conditions that necessary assumptions are not met.


Dr Mahsa Saadati,
Volume 5, Issue 2 (10-2017)
Abstract

Background & Objective: Migration, in any forms and by any motivations or outcomes, as a demographic phenomenon, has various cultural and socio-economic effects on local, regional, national and international levels. On the other hand, fertility plays an important role in health and population studies and researchers have examined its changes and trends in various aspects. The aim of this research was modeling the mean number of children ever born (CEB) for women who have left their cities or villages and migrated to Tehran city using regression tree model.
Methods: Data was obtained from 2% of raw data from the census of 2011 and analyzed by regression tree model. Tree models are nonparametric statistical techniques which do not need complicated and unreachable assumptions of traditional parametric ones and have a considerable accuracy of modeling. These models are associated with simple interpretation of results. Therefore, they have been used by researches in many fields such as social sciences.
Results: Age, educational level, job status, cause of migration, internet use for urban migrant women and age for rural migrant women were assumed as influential covariates in predicting the mean number of CEB.
Conclusion: Regression tree findings revealed that urban migrants who were in higher age groups, lower educational levels, unemployed and have not used internet have had more mean number of CEBs.


Page 1 from 1     

© 2025 CC BY-NC 4.0 | Jorjani Biomedicine Journal

Designed & Developed by : Yektaweb