Search published articles


Showing 2 results for Escherichia Coli O157

Kargar, M, Kargar, M, Zareian Jahromi, M,
Volume 9, Issue 3 (9-2015)
Abstract

Abstract

Background and Objective: Escherichia coli O157:H7 is one of the most well-known pathogenic bacteria worldwide that can develop severe diseases such as hemolytic uremic syndrome (HUS). This study aimed to assess the prevalence of virulence genes of E. coli O157:H7 in patients with suspected urinary tract infections (UTIs).

Material and Methods: This cross-sectional study was conducted on 10,372 urine samples collected from patients with suspected UTI from six hospitals and clinical laboratories in Shiraz city. CT-SMAC medium, b-glucosidase activity test (MUG), specific antiserum, and the presence of O157 and H7 genes by PCR were used to confirm E. coli O157:H7 isolates. Then, stx1, stx2, eaeA, and hlyA genes were evaluated using multiplex PCR.

Results: In this study, 16 (7.8%) and 13 (6.3%) bacteria had O157 and H7 genes, respectively. Evaluation of virulence genes showed that genes eaeA (15.4%), stx1 and eaeA (15.4%), stx2 (7.7%), and stx2 and eaeA (7.7%) had the highest frequency in E. coli O157:H7.

Conclusion: Due to the severity of pathogenicity, low infectious dose of E. coli O157: H7, and its pathogenic genes, more extensive studies and genotyping of E. coli O157: H7 are required to be conducted in other areas of Iran in order to measure the frequency in UTIs and control the infections caused by E. coli O157: H7.

Keywords: Escherichia coli O157:H7; Urinary Tract Infections; Shiga Toxin 1; Shiga Toxin 2.


Romina Saei Hamedani , Saeid Khanzadi, Mohammad Hashemi, Mohammad Azizzadeh,
Volume 16, Issue 1 (1-2022)
Abstract

Background and objectives: Neutralized electrolyzed water (NEW) is a novel natural disinfectant. It has been suggested that application of NEW can improve the shelf life of fish. This study aimed to investigate effect of NEW incorporated in alginate coating on growth of Escherichia coli O157: H7 on salmon fillets over a period of 12 days.
Methods: Fish fillets were inoculated with E. coli O157:H7 and divided into six different treatment groups: control (no coating), distilled water, alginate, EW, EW & alginate (Samples coated with alginate solution prepared by EW), and EW+ alginate (samples immersed in EW, then coated with alginate solution). The fillets were kept at 4 °C, and the bacterial count was determined on days: 0, 2, 4, 8, and 12. Data analysis was performed using repeated ANOVA and Bonferroni post-hoctest at statistical significance of 0.05.
Results: Treatment with alginate coating and EW alone could significantly reduce E. coli O157: H7 count on the salmon fillets. However, maximum reduction (1.27 log CFU/g) of bacteria was achieved when using alginate coating combined with EW.
Conclusion: According to the results, the combination of alginate coating with EW can be applied as a natural antimicrobial for increasing safety of food products, especially fish, against pathogenic bacteria such as E. coli O157: H7.

Page 1 from 1     

© 2007 All Rights Reserved | Medical Laboratory Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.