Volume 15, Issue 1 (Jan-Feb 2021)                   mljgoums 2021, 15(1): 33-39 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sadighi A, abdi A, Azarbayjani M A, barari A. Response of Some Apoptotic Indices to Six Weeks of Aerobic Training in Streptozotocin-Induced Diabetic Rats. mljgoums 2021; 15 (1) :33-39
URL: http://mlj.goums.ac.ir/article-1-1255-en.html
1- Department of Sport physiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
2- Department of Sport physiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran , a.abdi58@gmail.com
3- Department of Sport physiology, Faculty of Physical Education and Sports Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
Abstract:   (5489 Views)
Background and objectives: Cardiac apoptosis is one of the most important cardiovascular complications of diabetes. We aimed to investigate the changes of Bax, Bcl2 and caspase 3 in cardiac tissue of diabetic rats after six weeks aerobic exercise.
Methods: Thirty two male Wistar rats were randomly divided into healthy control, diabetes control and diabetes + exercise groups. Diabetes was induced by intraperitoneal injection of streptozotocin solution (55 mg/kg). Two weeks after the injection, fasting blood glucose levels were measured to confirm induction of diabetes. The exercise program was performed five days a week for six weeks. Variables were evaluated by ELISA and western blot analysis. All statistical analyses were performed in SPSS (version 22) using ANOVA and at significance of 0.05.
Results: The induction of diabetes in the control groups resulted in a significant increase in Bax, Bax/Bcl2 ratio and a significant decrease in Bcl2 levels (P=0.024). The six-week training exercise in diabetic groups significantly decreased Bax and Bax/Bcl2 ratio and significantly increased Bcl2 (P=0.018).
Conclusion: Our finding showed that diabetes could increase apoptosis in cardiac tissue. In addition, the six-week aerobic exercise can be used as a non-pharmacological strategy to reduce diabetes-related apoptosis in cardiomyocytes.
Full-Text [PDF 962 kb]   (790 Downloads)    
Research Article: Original Paper | Subject: Sport Physiology
Received: 2019/09/28 | Accepted: 2020/05/3 | Published: 2021/01/1 | ePublished: 2021/01/1

References
1. Chandirasegaran G, Elanchezhiyan C, Ghosh K. Effects of Berberine chloride on the liver of streptozotocin-induced diabetes in albino Wistar rats. Biomedicine & Pharmacotherapy. 2018; 99: 227-236. [DOI:10.1016/j.biopha.2018.01.007] [PubMed] [Google Scholar]
2. Chandirasegaran G, Elanchezhiyan C, Ghosh K, Sethupathy S. Berberine chloride ameliorates oxidative stress, inflammation and apoptosis in the pancreas of Streptozotocin induced diabetic rats. Biomedicine & Pharmacotherapy. 2017; 95: 175-185. [DOI:10.1016/j.biopha.2017.08.040] [PubMed] [Google Scholar]
3. Hansen SS, Aasum E, Hafstad AD. The role of NADPH oxidases in diabetic cardiomyopathy. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2018; 1864(5): 1908-1913. [DOI:10.1016/j.bbadis.2017.07.025] [PubMed] [Google Scholar]
4. Sivasankar D, George M, Sriram DK. Novel approaches in the treatment of diabetic cardiomyopathy. Biomedicine & pharmacotherapy= Biomedecine & pharmacotherapie. 2018; 106: 1039. [DOI:10.1016/j.biopha.2018.07.051] [PubMed] [Google Scholar]
5. Chang W, Zhang M, Meng Z, Yu Y, Yao F, Hatch GM, et al. Berberine treatment prevents cardiac dysfunction and remodeling through activation of 5′-adenosine monophosphate-activated protein kinase in type 2 diabetic rats and in palmitate-induced hypertrophic H9c2 cells. Eur J Pharmacol. 2015; 769: 55-63. [DOI:10.1016/j.ejphar.2015.10.043] [PubMed] [Google Scholar]
6. Lew JKS, Pearson JT, Schwenke DO, Katare R. Exercise mediated protection of diabetic heart through modulation of microRNA mediated molecular pathways. Cardiovascular diabetology. 2017; 16(1): 10. [DOI:10.1186/s12933-016-0484-4] [PubMed] [Google Scholar]
7. Qiao Y, Zhao Y, Liu Y, Ma N, Wang Ch, Zou J, et al. miR-483-3p regulates hyperglycaemia-induced cardiomyocyte apoptosis in transgenic mice. Biochemical and biophysical research communications. 2016; 477(4): 541-547. [DOI:10.1016/j.bbrc.2016.06.051] [PubMed] [Google Scholar]
8. Lee SD, Shyu WC, Cheng IS, Kuo CH, Chan YS, Lin YM, et al. Effects of exercise training on cardiac apoptosis in obese rats. Nutrition, Metabolism and Cardiovascular Diseases. 2013; 23(6): 566-573. [DOI:10.1016/j.numecd.2011.11.002] [PubMed] [Google Scholar]
9. Williamson CL, Dabkowski ER, Baseler WA, Croston TL, Alway SE, Hollander JM. Enhanced apoptotic propensity in diabetic cardiac mitochondria: influence of subcellular spatial location. American Journal of Physiology-Heart and Circulatory Physiology. 2009; 298(2): H633-H642. [DOI:10.1152/ajpheart.00668.2009] [PubMed] [Google Scholar]
10. Williamson CL, Dabkowski ER, Hollander JM. Enhanced apoptotic propensity in diabetic cardiac interfibrillar mitochondria. ed: Federation of American Societies for Experimental Biology, 2008.
11. Qi H, Jiang Y, Yin Z, Jiang K, Li L, Shuai J. Optimal pathways for the assembly of the Apaf-1• cytochrome c complex into apoptosome. Physical Chemistry Chemical Physics. 2018; 20(3): 1964-1973, . [DOI:10.1039/C7CP06726G] [PubMed] [Google Scholar]
12. Geng FH, Li GH , Zhang X , Zhang P, Dong MQ, Zhao ZJ, et al. Berberine improves mesenteric artery insulin sensitivity through up‐regulating insulin receptor‐mediated signalling in diabetic rats. British journal of pharmacology. 2016; 173(10): 1569-1579. [DOI:10.1111/bph.13466] [PubMed] [Google Scholar]
13. Karstoft K , Clark MA, Jakobsen I, Müller IA, Pedersen BK, Solomon TPJ, et al. The effects of 2 weeks of interval vs continuous walking training on glycaemic control and whole-body oxidative stress in individuals with type 2 diabetes: a controlled, randomised, crossover trial. Diabetologia. 2017; 60(3): 508-517. [DOI:10.1007/s00125-016-4170-6] [PubMed] [Google Scholar]
14. Li LO, Grevengoed TJ, Paul DS, Ilkayeva O, Koves TR, Pascual F, et al. Compartmentalized acyl-CoA metabolism in skeletal muscle regulates systemic glucose homeostasis. Diabetes. 2015; 64(1): 23-35. [DOI:10.2337/db13-1070] [PubMed] [Google Scholar]
15. Sjøberg KA, Frøsig C, Kjøbsted R, Sylow L, Kleinert M, Betiket AC, al. Exercise increases human skeletal muscle insulin sensitivity via coordinated increases in microvascular perfusion and molecular signaling. Diabetes. 2017; 66(6): 1501-1510. [DOI:10.2337/db16-1327] [PubMed] [Google Scholar]
16. Ma N, Liu HM, Xia T, Liu JD, Wang XZ. Chronic aerobic exercise training alleviates myocardial fibrosis in aged rats through restoring bioavailability of hydrogen sulfide. Canadian journal of physiology and pharmacology. 2018; 96(9): 902-908. [DOI:10.1139/cjpp-2018-0153] [PubMed] [Google Scholar]
17. Sun Yi, Cui Di, Zhang Zhe, Zhang Tan, Shi Jun, Jin Haixiu, et al. Attenuated oxidative stress following acute exhaustive swimming exercise was accompanied with modified gene expression profiles of apoptosis in the skeletal muscle of mice. Oxidative medicine and cellular longevity. 2016; 2016; 2016: 8381242. [DOI:10.1155/2016/8381242] [PubMed] [Google Scholar]
18. Zeglinski MR, Davies JJ, Ghavami S, Rattan SG, Halayko AJ, Dixon IM. Chronic expression of Ski induces apoptosis and represses autophagy in cardiac myofibroblasts. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2016; 1863(6): 1261-1268. [DOI:10.1016/j.bbamcr.2016.03.027] [PubMed] [Google Scholar]
19. Dotzert MS, Murray MR, McDonald MW, Olver TD, Thomas J Velenosi, Anzel Hennop, et al. Metabolomic response of skeletal muscle to aerobic exercise training in insulin resistant type 1 diabetic rats. Scientific reports. 2016; 6: 26379. [DOI:10.1038/srep26379] [PubMed] [Google Scholar]
20. Verboven M, Ryckeghem LV, Belkhouribchia J, Dendale P, Eijnde BO, Hansen D, et al. Effect of exercise intervention on cardiac function in type 2 diabetes mellitus: a systematic review. Sports Medicine. 2019; 49(2): 255-268. [DOI:10.1007/s40279-018-1003-4] [PubMed] [Google Scholar]
21. Li S, Liang M, Gao D, Su Q, Laher I. Changes in Titin and Collagen Modulate Effects of Aerobic and Resistance Exercise on Diabetic Cardiac Function. Journal of cardiovascular translational research. 2019; 1-11. [PubMed] [Google Scholar]
22. Dai W, Lee D. Interfering with long chain noncoding RNA ANRIL expression reduces heart failure in rats with diabetes by inhibiting myocardial oxidative stress. Journal of cellular biochemistry. 2019; 120(10):18446-18456. [DOI:10.1002/jcb.29162] [PubMed] [Google Scholar]
23. Ramezani J, Azarbayjani MA, Peeri M. Simultaneous Effects of Aerobic Training and Berberine Chloride on Plasma Glucose, IL-6 and TNF-α in Type 1 Diabetic Male Wistar Rats. Nutrition and Food Sciences Research. 2019; 6(1): 9-16, . [DOI:10.29252/nfsr.6.1.9] [Google Scholar]
24. McDonald MW, Olver TD, Dotzert MS , Jurrissen TJ , Noble EG, Padilla J, et al. Aerobic exercise training improves insulin-induced vasorelaxation in a vessel-specific manner in rats with insulin-treated experimental diabetes. Diabetes and Vascular Disease Research. 2019; 16(1): 77-86. [DOI:10.1177/1479164118815279] [PubMed] [Google Scholar]
25. Ferraro B, Donniacuo M , Sodano L , Ferraraccio F , Maisto R , Gulotta E, et al. Addition of the Aldose Reductase Inhibitor Benzofuroxane Derivative BF-5m to Prolonged and Moderate Exercise Training Enhanced Protection of the Rat Heart From Type-1 Diabetes. Frontiers in Pharmacology. 2019; 10:392. [DOI:10.3389/fphar.2019.00392] [PubMed] [Google Scholar]
26. Kanter M, Aksu F, Takir M, Kostek O, Kanter B, Oymagil A. Effects of low intensity exercise against apoptosis and oxidative stress in Streptozotocin-induced diabetic rat heart. Experimental and Clinical Endocrinology & Diabetes. 2017; 125(9): 583-591. [DOI:10.1055/s-0035-1569332] [PubMed] [Google Scholar]
27. Hadden C, Fahmi T, Cooper A , Savenka AV, Lupashin VV, Roberts DJ. Serotonin transporter protects the placental cells against apoptosis in caspase 3‐independent pathway. J Cell Physiol . 2017; 232(12): 3520-3529. [DOI:10.1002/jcp.25812] [PubMed] [Google Scholar]
28. GB Singh, Raut SK, Khanna S, Kumar A , Sharma S, Prasad R, et al. MicroRNA-200c modulates DUSP-1 expression in diabetes-induced cardiac hypertrophy," Molecular and cellular biochemistry. 2017; 424(1-2): 1-11. [DOI:10.1007/s11010-016-2838-3] [PubMed] [Google Scholar]
29. Raut SK, Singh GB, Rastogi B, Saikia UN, Mittal A, Dogra N, et al. miR-30c and miR-181a synergistically modulate p53–p21 pathway in diabetes induced cardiac hypertrophy. Molecular and cellular biochemistry. 2016; 417(1-2): 191-203. [DOI:10.1007/s11010-016-2729-7] [PubMed] [Google Scholar]
30. Russo I, Frangogiannis NG. Diabetes-associated cardiac fibrosis: cellular effectors, molecular mechanisms and therapeutic opportunities. Journal of molecular and cellular cardiology. 2016; 90: 84-93. [DOI:10.1016/j.yjmcc.2015.12.011] [PubMed] [Google Scholar]
31. Kayama Y, Raaz U, Jagger A, Adam M, Schellinger IN, Sakamoto M, et al. Diabetic cardiovascular disease induced by oxidative stress. International journal of molecular sciences. 2015; 16(10): 25234-25263. [DOI:10.3390/ijms161025234] [PubMed] [Google Scholar]
32. Seo H, Park CH, Choi S, Kim W, Jeon BD , Ryu S. Effects of voluntary exercise on apoptosis and cortisol after chronic restraint stress in mice. Journal of exercise nutrition & biochemistry. 2016; 20(3): 16. [DOI:10.20463/jenb.2016.09.20.3.3] [PubMed] [Google Scholar]
33. Seo H, Park CH, Choi S, Kim W, Jeon BD, Ryu S. Effects of voluntary exercise on apoptosis and cortisol after chronic restraint stress in mice. J Exerc Nutrition Biochem. 2016 Sep;20(3):16-23. [DOI:10.1016/j.jgr.2019.08.006] [PubMed] [Google Scholar]
34. Wu G, Tan J, Li J, Sun X, Du L, Tao S. miRNA-145-5p induces apoptosis after ischemia-reperfusion by targeting dual specificity phosphatase 6. J Cell Physiol. 2019 Mar 18. [DOI:10.1002/jcp.28291] [PubMed] [Google Scholar]
35. Ellison GM, Waring CD, Vicinanza C, Torella D. Physiological cardiac remodelling in response to endurance exercise training: cellular and molecular mechanisms. Heart. 2012 Jan;98(1):5-10. [DOI:10.1136/heartjnl-2011-300639] [PubMed] [Google Scholar]
36. Kwak HB, Song W, Lawler JM. Exercise training attenuates age-induced elevation in Bax/Bcl-2 ratio, apoptosis, and remodeling in the rat heart. FASEB J. 2006 Apr;20(6):791-3. [DOI:10.1096/fj.05-5116fje] [PubMed] [Google Scholar]
37. Ghajari H, Hosseini SA, Farsi S. The Effect of Endurance Training Along with Cadmium Consumption on Bcl-2 and Bax Gene Expressions in Heart Tissue of Rats. Annals of Military and Health Sciences Research. 2019; 17(1): e86795. [DOI:10.5812/amh.86795] [Google Scholar]
38. Ascensão A, Magalhães J, Soares JMC,Ferreira R, Neuparth MJ, Marques F, et al. Moderate endurance training prevents doxorubicin-induced in vivo mitochondriopathy and reduces the development of cardiac apoptosis. American Journal of Physiology-Heart and Circulatory Physiology. 2005; 289(2): H722-H731. [DOI:10.1152/ajpheart.01249.2004] [PubMed] [Google Scholar]
39. Siu PM, Bryner RW, Martyn JK, Alway SE. Apoptotic adaptations from exercise training in skeletal and cardiac muscles. FASEB J. 2004 Jul;18(10):1150-2. [DOI:10.1096/fj.03-1291fje] [PubMed] [Google Scholar]
40. Huang CC, Lin TJ, Chen CC, Lin WT. Endurance training accelerates exhaustive exercise-induced mitochondrial DNA deletion and apoptosis of left ventricle myocardium in rats. Eur J Appl Physiol. 2009 Dec;107(6):697-706. [DOI:10.1007/s00421-009-1177-4] [PubMed] [Google Scholar]
41. Madea B, Wagner R, Markwerth P, Doberentz E. Heat shock protein expression in cardiac tissue in amphetamine-related deaths. Romanian Journal of Legal Medicine. 2017; 25(1): 8-13. [DOI:10.4323/rjlm.2017.8] [Google Scholar]
42. Chen YP, Sivalingam K, Shibu MA, Peramaiyan R, Day CH, Shen CY, Lai CH, Chen RJ, Viswanadha VP, Chen YF, Huang CY. Protective effect of Fisetin against angiotensin II-induced apoptosis by activation of IGF-IR-PI3K-Akt signaling in H9c2 cells and spontaneous hypertension rats. Phytomedicine. 2019 Apr;57:1-8. [DOI:10.1016/j.phymed.2018.09.179] [PubMed] [Google Scholar]
43. Liao Y, Li H, Pi Y, Li Z, Jin S. Cardioprotective effect of IGF-1 against myocardial ischemia/reperfusion injury through activation of PI3K/Akt pathway in rats in vivo. J Int Med Res. 2019 Aug;47(8):3886-3897. [DOI:10.1177/0300060519857839] [PubMed] [Google Scholar]
44. Margaritelis NV, Theodorou AA, Paschalis V, Veskoukis AS, Dipla K, Zafeiridis A, Panayiotou G, Vrabas IS, Kyparos A, Nikolaidis MG. Adaptations to endurance training depend on exercise-induced oxidative stress: exploiting redox interindividual variability. Acta Physiol (Oxf). 2018 Feb;222(2). e12898. [DOI:10.1111/apha.12898] [PubMed] [Google Scholar]
45. Erekat NS, Rababa'h RA, Al-Jarrah MD. Overexpression of renal proapoptotic factors is attenuated subsequent to endurance exercise in Type I diabetes: An immunohistochemistry study. Journal of Natural Science, Biology and Medicine. 2019; 10(1): 24. [DOI:10.4103/jnsbm.JNSBM_60_18] [Google Scholar]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2007 All Rights Reserved | Medical Laboratory Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.