1. Kobbi S, Nedjar N, Chihib N, Balti R, Chevalier M, Silvain A, et al. Synthesis and antibacterial activity of new peptides from Alfalfa RuBisCO protein hydrolysates and mode of action via a membrane damage mechanism against Listeria innocua. Microbial pathogenesis. 2018;115:41-9. doi: 10.1016/j.micpath.2017.12.009. [
DOI:10.1016/j.micpath.2017.12.009]
2. Nascimento Canhas I, Dias Heneine LG, Fraga T, Sampaio de Assis DC, Borges MH, Chartone-Souza E, et al. Antibacterial activity of different types of snake venom from the Viperidae family against Staphylococcus aureus. Acta Scientiarum Biological Sciences. 2017; 39(3): 309-319. [
DOI:10.4025/actascibiolsci.v39i3.33826]
3. Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacological reviews. 2003; 55(1): 27-55. [
DOI:10.1124/pr.55.1.2]
4. Abtahi B, Mosafer Khorjestan S, Ghezellou P, Aliahmadi A, Ranaei Siadat SO, Kazemi SM, et al. Effects of Iranian Snakes Venom True Sea and Terrestrial Snakes on Some Bacterial Cultures. Journal of the Persian Gulf. 2014; 5(18): 27-36.
5. Starr CG, Wimley WC. Antimicrobial peptides are degraded by the cytosolic proteases of human erythrocytes. Biochim Biophys Acta Biomembr. 2017; 1859(12): 2319-2326. doi: 10.1016/j.bbamem.2017.09.008. [
DOI:10.1016/j.bbamem.2017.09.008]
6. Primon-Barros M, José Macedo A. Animal Venom Peptides: Potential for New Antimicrobial Agents. Current topics in medicinal chemistry. 2017; 17(10): 1119-56. doi: 10.2174/1568026616666160930151242. [
DOI:10.2174/1568026616666160930151242]
7. Deslouches B, Di YP. Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications. Oncotarget. 2017; 8(28): 46635. [
DOI:10.18632/oncotarget.16743]
8. Troeira Henriques Sn, Lawrence N, Chaousis S, Ravipati AS, Cheneval O, Benfield AH, et al. Redesigned spider peptide with improved antimicrobial and anticancer properties. ACS Chemical Biology. 2017; 12(9): 2324-34. DOI: 1021/acschembio.7b00459. [
DOI:10.1021/acschembio.7b00459]
9. Kuhn-Nentwig L. Antimicrobial and cytolytic peptides of venomous arthropods. Cellular and Molecular Life Sciences CMLS. 2003; 60(12): 2651-68. [
DOI:10.1007/s00018-003-3106-8]
10. Zamani A, Mirshamsi O, Savoji A, Shahi M. Contribution to the distribution of spiders with significant medical importance (Araneae: Loxosceles and Latrodectus) in Iran, with a new record for the country. Iranian Journal of Animal Biosystematics. 2014 Aug 13; 10 (1): 57-66 [
DOI:10.3897/zookeys.463.8692]
11. Abolfazl A, Ahmad TM, Hadi R. Venom and envenomation of Iranian black widow spider, Latrodectus. Journal of Experimental Zoology, India. 2013; 16(2): 541-3.
12. Ushkaryov YA, Rohou A, Sugita S. α-Latrotoxin and its receptors. Handb Exp Pharmacol. 2008; 184: 171-206. [
DOI:10.1007/978-3-540-74805-2_7]
13. Andrews JM. Determination of minimum inhibitory concentrations. Journal of antimicrobial Chemotherapy. 2001; 48(suppl 1): 5-16. [
DOI:10.1093/jac/48.suppl_1.5]
14. Shebl R, Mohamed A, Ali AE, Amin M. Antimicrobial Profile of Selected Snake Venoms and Their Associated Enzymatic Activities. 2012; 2(4): 251-263. [
DOI:10.9734/BMRJ/2012/2091]
15. Wang H, Cheng H, Wang F, Wei D, Wang X. An improved 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) reduction assay for evaluating the viability of Escherichia coli cells. J Microbiol Methods. 2010; 82(3): 330-3. doi: 10.1016/j.mimet.2010.06.014. [
DOI:10.1016/j.mimet.2010.06.014]
16. Garcia F, Villegas E, Espino-Solis GP, Rodriguez A, Paniagua-Solis JF, Sandoval-Lopez G, et al. Antimicrobial peptides from arachnid venoms and their microbicidal activity in the presence of commercial antibiotics. J Antibiot (Tokyo). 2013; 66 [
DOI:10.1038/ja.2012.87]
17. Roose-Amsaleg C, Laverman AM. Do antibiotics have environmental side-effects? Impact of synthetic antibiotics on biogeochemical processes. Environ Sci Pollut Res Int. 2016; 23(5): 4000-12. doi: 10.1007/s11356-015-4943-3. [
DOI:10.1007/s11356-015-4943-3]
18. Langdon A, Crook N, Dantas G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med. 2016; 8(1): 39. doi: 10.1186/s13073-016-0294-z. [
DOI:10.1186/s13073-016-0294-z]
19. Benli M, Yigit N. Antibacterial activity of venom from funnel web spider Agelena labyrinthica (Araneae: Agelenidae). Journal of Venomous Animals and Toxins including Tropical Diseases. 2008; 14(4): 641-50. [
DOI:10.1590/S1678-91992008000400007]
20. Walsh CT, Wencewicz TA. Prospects for new antibiotics: a molecule-centered perspective. The Journal of antibiotics. 2014; 67(1): 7-22. [
DOI:10.1038/ja.2013.49]
21. Butler MS, Blaskovich MA, Cooper MA. Antibiotics in the clinical pipeline at the end of 2015. Antibiotics in the clinical pipeline at the end of 2015. J Antibiot (Tokyo). 2017; 70 [
DOI:10.1038/ja.2016.72]
22. Harrison PL, Abdel-Rahman MA, Miller K, Strong PN. Antimicrobial peptides from scorpion venoms. Toxicon. 2014; 88: 115-37. doi: 10.1016/j.toxicon.2014.06.006. [
DOI:10.1016/j.toxicon.2014.06.006]
23. da Mata ÉCG, Mourão CBF, Rangel M, Schwartz EF. Antiviral activity of animal venom peptides and related compounds. J Venom Anim Toxins Incl Trop Dis. 2017; 23(1): 3. doi: 10.1186/s40409-016-0089-0. [
DOI:10.1186/s40409-016-0089-0]
24. Abreu TF, Sumitomo BN, Nishiyama MY, Oliveira UC, Souza GH, Kitano ES, et al. Peptidomics of Acanthoscurria gomesiana spider venom reveals new toxins with potential antimicrobial activity. J Proteomics. 2017; 151: 232-242. doi: 10.1016/j.jprot.2016.07.012. [
DOI:10.1016/j.jprot.2016.07.012]
25. Kuhn-Nentwig L. Antimicrobial and cytolytic peptides of venomous arthropods. Cell Mol Life Sci. 2003; 60(12): 2651-68. [
DOI:10.1007/s00018-003-3106-8]
26. Samy RP, Stiles BG, Franco OL, Sethi G, Lim LH. Animal venoms as antimicrobial agents. Biochemical pharmacology. 2017; 134: 127-38. doi: 10.1016/j.bcp.2017.03.005. [
DOI:10.1016/j.bcp.2017.03.005]
27. Liu Z, Zhao Y, Li J, Xu S, Liu C, Zhu Y, Liang S. The venom of the spider Macrothele raveni induces apoptosis in the myelogenous leukemia K562 cell line. Leuk Res. 2012; 36 [
DOI:10.1016/j.leukres.2012.02.025]
28. Al-Asmari AK, Alamri MA, Almasoudi AS, Abbasmanthiri R, Mahfoud M. Evaluation of the in vitro antimicrobial activity of selected Saudi scorpion venoms tested against multidrug-resistant micro-organisms. J Glob Antimicrob Resist. 2017; 10: 14-18. doi: 10.1016/j.jgar.2017.03.008. [
DOI:10.1016/j.jgar.2017.03.008]
29. de Melo ET, Estrela AB, Santos EC, Machado PR, Farias KJ, Torres TM, et al. Structural characterization of a novel peptide with antimicrobial activity from the venom gland of the scorpion Tityus stigmurus: Stigmurin. Peptides. 2015; 68: 3-10. doi: 10.1016/j.peptides.2015.03.003. [
DOI:10.1016/j.peptides.2015.03.003]
30. Ponnappan N, Chugh A. Cell-penetrating and cargo-delivery ability of a spider toxin-derived peptide in mammalian cells. Eur J Pharm Biopharm. 2017;114:145-153. doi: 10.1016/j.ejpb.2017.01.012. [
DOI:10.1016/j.ejpb.2017.01.012]
31. Lian W, Lian H, Li Q, An H, Liu S. The venom of spider Haplopelma hainanum suppresses proliferation and induces apoptosis in hepatic cancer cells by caspase activation in vitro. J Ethnopharmacol. 2018; 225: 169-177. doi: 10.1016/j.jep.2018.06.022. [
DOI:10.1016/j.jep.2018.06.022]
32. Benli M, Yigit N. Antibacterial activity of venom from funnel web spider Agelena labyrinthica (Araneae: Agelenidae). J Venom Anim Toxins incl Trop Dis. 2008; 14(4): 641-50. [
DOI:10.1590/S1678-91992008000400007]
33. Ghasemi-Dizgah A, Amirmozafari N. Evaluation of antibacterial effect of Tarantula cubensisvenome (Theranekron). Int J Bioplogy Pharm Appl Sci. 2015; 4: 5980-9.
34. Lei Q, Yu H, Peng X, Yan S, Wang J, Yan Y, et al. Isolation and preliminary characterization of proteinaceous toxins with insecticidal and antibacterial activities from black widow spider (L. tredecimguttatus) eggs. Toxins. 2015; 7(3): 886-99. [
DOI:10.3390/toxins7030886]