Volume 13, Issue 2 (Mar-Apr 2019)                   mljgoums 2019, 13(2): 41-47 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Alsabah Alavizadeh N, Rashidlamir A, Hejazi S M. Effects of Eight Weeks of Cardiac Rehabilitation Training on Serum Levels of Sirtuin1 and Functional Capacity of Post- Coronary Artery Bypass Grafting Patients. mljgoums 2019; 13 (2) :41-47
URL: http://mlj.goums.ac.ir/article-1-1186-en.html
1- Student of Sports Physiology, Islamic Azad University of Neyshabour, Neyshabour, Iran
2- Department of Sports Physiology, Faculty of Sports Sciences, Ferdowsi University of Mashhad, Mashhad, Iran , rashidlamir@um.ac.ir
3- Department of Sports Physiology, Faculty of SportsSciences, Islamic Azad University of Mashhad, Mashhad, Iran
Abstract:   (9969 Views)
ABSTRACT
             Background and Objectives: Cardiac rehabilitation improves functional capacity of post-coronary artery bypass grafting (CABG) patients. Therefore, the aim of this study was to evaluate effects of eight weeks of cardiac rehabilitation on serum levels of sirutin1 (SIRT1) and functional capacity of post-CABG patients.
             Methods: Forty-five non-active men (mean age: 47.4 ± 3.3 years, duration of disease: 150 ± 69.12 months) were randomly divided into three equal groups: aerobic exercise, combined (resistance and aerobic) exercise and control. The subjects performed trainings at 60-75% of maximum heart rate, three sessions a week for eight weeks. Blood samples were collected 24 hours before the first exercise session and 48 hours after the last exercise session. Data were analyzed with SPSS 16.0 using one-way ANOVA and the Tukey post hoc test. P-values less than 0.05 were considered statistically significant.
             Results: Aerobic and combined exercise increased serum SIRT1 levels and functional capacity. There was no significant decrease in body mass index (P=0.06). The SIRT1 level did not differ significantly between the two exercise groups after the intervention (P=0.91). There were significant difference between the study groups in terms of the travelled distance (P<0.034).
             Conclusion: Both combined and aerobic exercise can increase serum levels of SIRT1, reduce body mass index and improve functional capacity in CABG patients.
             Keywords: Resistance training, exercise, SIRT1.
Full-Text [PDF 634 kb]   (1603 Downloads)    
Research Article: Original Paper |
Received: 2019/02/4 | Accepted: 2019/02/4 | Published: 2019/02/4 | ePublished: 2019/02/4

References
1. Lie I, Arnesen H, Sandvik L, Hamilton G, Bunch EH. Predictors for physical and mental health 6 months after coronary artery bypass grafting. Eur J Cardiovasc Nurs. 2010; 9(4): 238-43. doi: 10.1016/j.ejcnurse.2010.02.001. [DOI:10.1016/j.ejcnurse.2010.02.001]
2. Aliabad HO, Vafaeinasab M, Morowatisharifabad MA, Afshani SA, Firoozabadi MG, Forouzannia SK. Maintenance of physical activity and exercise capacity after rehabilitation in coronary heart disease: A randomized controlled trial. Glob J Health Sci. 2014; 6(6): 198-208. doi: 10.5539/gjhs.v6n6p198. [DOI:10.5539/gjhs.v6n6p198]
3. World Health Organization. Cardiovascular disease. Geneva: WHO; 2008.
4. Quiles J, Miralles-Vicedo B. Secondary prevention strategies for acute coronary syndrome. Rev Esp Cardiol. 2014; 67(10): 844-8. DOI: 10.1016/j.rec.2014.04.013. [DOI:10.1016/j.rec.2014.04.013]
5. Mark AW, Ades P, Hamm L, Keteyian S, Lafontaine T, Rotiman J. Clinical evidence for a health benefit from cardiac rehabilitation: an update. Am Heart J (2006); 152(5): 835-841. DOI:10.1016/j.ahj.2006.05.015. [DOI:10.1016/j.ahj.2006.05.015]
6. Tanno M, Kuno A, Horio Y, Miura T. Emerging beneficial roles of sirtuins in heart failure. Basic Res Cardiol. 2012; 107(4): 273. doi: 10.1007/s00395-012-0273-5. [DOI:10.1007/s00395-012-0273-5]
7. Corbi G, Conti V, Russomanno G, Longobardi G, Furgi G, Filippelli A, et al. Adrenergic signaling and oxidative stress: a role for sirtuins? Front Physiol. 2013; 4: 324. doi: 10.3389/fphys.2013.00324. [DOI:10.3389/fphys.2013.00324]
8. Yu W, Fu YC, Chen CJ, Wang X, Wang W. SIRT1: a novel target to prevent atherosclerosis. J Cell Biochem. 2009; 108(1): 10-3. doi: 10.1002/jcb.22240. [DOI:10.1002/jcb.22240]
9. Potente M, Dimmeler S. Emerging roles of SIRT1 in vascular endothelial homeostasis. Cell Cycle. 2008; 7(14): 2117-2122. [DOI:10.4161/cc.7.14.6267]
10. Cui Y, Wang H, Chen H, Pang S, Wang L, Liu D, et al. Genetic analysis of the SIRT1 gene promoter in myocardial infarction. Biochem Biophys Res Commun. 2012; 426(2): 232-6. doi: 10.1016/j.bbrc.2012.08.071. [DOI:10.1016/j.bbrc.2012.08.071]
11. Michan S. Calorie restriction and NAD+ /sirtuin counteract the hallmarks of agine. FRONT Biosci. 2014; 19: 1300-19. [DOI:10.2741/4283]
12. Lanza IR, Short DK, Short KR, Raghavakaimal S, Basu R, Joyner MJ, et al. Endurance exercise as a countermeasure for aging. Diabetes. 2008; 57(11): 2933-42. doi: 10.2337/db08-0349. [DOI:10.2337/db08-0349]
13. Gurd BJ, Holloway GP, Yoshida Y, Bonen A. In mammalian muscle, SIRT3 is present in mitochondria and not in the nucleus; and SIRT3 is upregulated by chronic muscle contraction in an adenosine monophosphate-activated protein kinase–independent manner. Metabolism. 2012; 61(5): 733-41. doi: 10.1016/j.metabol.
14. Hokari F, Kawasaki E, Sakai A, Koshinaka K, Sakuma K, Kawanaka K. Muscle contractile activity regulates Sirt3 protein expression in rat skeletal muscles. J Appl Physiol (1985). 2010; 109(2): 332-40. doi: 10.1152/japplphysiol.00335.2009. [DOI:10.1152/japplphysiol.00335.2009]
15. Palacios OM, Carmona JJ, Michan S, Chen KY, Manabe Y, Ward Iii JL, et al. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1α in skeletal muscle. Aging (Albany NY). 2009; 1(9): 771-83. [DOI:10.18632/aging.100075]
16. Ma L, Y Li. SIRT1: role in cardiovascular biology. Clin Chim Acta. 2015; 440: 8-15. doi: 10.1016/j.cca.2014.10.036. [DOI:10.1016/j.cca.2014.10.036]
17. Zhang MJ, Zhou Y, Chen L, Wang X, Long CY, Pi Y, et al. SIRT1 improves VSMC functions in atherosclerosis. Prog Biophys Mol Biol. 2016; 121(1):11-5. doi: 10.1016/j.pbiomolbio.2016.02.003. [DOI:10.1016/j.pbiomolbio.2016.02.003]
18. Lu T-M, Tsai J-Y, Chen Y-C, Huang C-Y, Hsu H-L, Weng C-F, et al. Downregulation of Sirt1 as aging change in advanced heart failure.J Biomed Sci. 2014; 21(1): 57. doi: 10.1186/1423-0127-21-57. [DOI:10.1186/1423-0127-21-57]
19. Passino C, Severino S, Poletti R, Piepoli MF, Mammini C, Clerico A, et al. Aerobic training decreases B-type natriuretic peptide expression and adrenergic activation in patients with heart failure. J Am Coll Cardiol. 2006; 47(9): 1835-9. [DOI:10.1016/j.jacc.2005.12.050]
20. Gaeini A, Sadegh Sattarifard S, CafiZadeh S, Nejatian M. The comparison of eight weeks of combined and aerobic training onfunctional capacity, body composition and strength in post-coronary artery bypass graft cardiac patients. Cardiovascular Nursing Journal. 2013; 2(1): 41-34.
21. Oliveira JL, Galvão CM, Rocha SM. Resistance exercises for health promotion in coronary patients: Evidence of benefits and risks. Int J Evid Based Healthc. 2008; 6(4): 431-9. doi: 10.1111/j.1744-1609.2008.00114.x. [DOI:10.1111/j.1744-1609.2008.00114.x]
22. Dakei Z, Hemmat Far A, Azizbeigi K. Effect of resistance and endurance training protocols on functional capacityand quality of life in male patients after myocardial infarction. Cardiovascular Nursing Journal. 2014; 3(1): 26-33.
23. Lee R, Chan YH, Wong J, Lau D, Ng K. The 6-minute walk test predicts clinical outcome in Asian patients with chronic congestive heart failure on contemporary medical therapy: A study of the multiracial population in Singapore. Int J Cardiol. 2007; 119(2): 168-75. [DOI:10.1016/j.ijcard.2006.07.189]
24. Martin BJ, Arena R, Haykowsky M, Hauer T, Austford LD, Knudtson M, et al. Cardiovascular fitness and mortality after contemporary cardiac rehabilitation. Mayo Clin Proc. 2013; 88(5): 455-63. doi: 10.1016/j.mayocp.
25. American College of Sports Medicine. ACSM's Guidelines for Exercise Testing and Prescription. 6th ed. Baltimore. Md: Lippincott Williams & Wilkins. 2000.
26. Polock ML, Franklin B A, Balady GJ, chaitman BL, fleg JL, Fletcher B, et al. Resistance Exercise In Individuals with and without cardiovascular Diseas. Circulation. 2000; 101: 828-833.
27. Enright PL. The six-minute walk test. Respiratory care. 2003; 48(8): 783-785.
28. Adams BJ, Carr JG, Ozonoff A, Lauer MS, Balady GJ. Effect of exercise training in supervised cardiac rehabilitation programs on prognostic variables from The exercise tolerance test. Am J Cardiol. 2008; 101(10): 1403-7. doi: 10.1016/j.amjcard.2008.01.016. [DOI:10.1016/j.amjcard.2008.01.016]
29. Choo J, Burke LE, Hong KP. Improved quality of life with cardiac rehabilitation for post-myocardial infarction patients in Korea. Eur J Cardiovasc Nurs. 2007; 6(3): 166-71. [DOI:10.1016/J.EJCNURSE.2006.07.004]
30. Siavoshi S, Roshandel M, Zareiyan A, Ettefagh L. The effect of cardiac rehabilitation care plan on the quality of life in patients undergoing coronary artery bypass graft surgery. Cardiovascular Nursing Journal. 2012; 1(2): 38-46.
31. Ghroubi S, Elleuch W, Abid L, Abdenadher M, Kammoun S, Elleuch MH. Effects of a low-intensity dynamic-resistance training protocol using an isokinetic dynamometer on muscular strength and aerobic capacity after coronary artery bypass grafting. Ann Phys Rehabil Med. 2013; 56(2): 85-101. doi: 10.1016/j.rehab.2012.10.006. [DOI:10.1016/j.rehab.2012.10.006]
32. Reibis RK, Treszl A, Wegscheider K, Ehrlich B, Dissmann R, Völler H. Exercise capacity is the most powerful predictor of 2-year mortality in patients with left ventricular systolic dysfunction. Herz. 2010; 35(2): 104-110. doi: 10.1007/s00059-010-3226-5. [DOI:10.1007/s00059-010-3226-5]
33. Mampuya WM. Cardiac rehabilitation past, present and future: An overview. Cardiovasc Diagn Ther. 2012; 2(1): 38-49. doi: 10.3978/j.issn.2223-3652.2012.01.02.
34. Dusseldorp E, Van Elderen T, Maes S, Meulman J, kraaij V. A meta-analysis of psychoeducational programs for coronary heart disease patients. Health Psychology. 1999. 18(5): 506-19. [DOI:10.1037/0278-6133.18.5.506]
35. Beckie TM, Beckstead JW, Kip K, Fletcher G. Physiological and exercise capacity improvements in women completing cardiac rehabilitation. J Cardiopulm Rehabil Prev. 2013; 33(1):16-25. doi: 10.1097/HCR.0b013e3182763192. [DOI:10.1097/HCR.0b013e3182763192]
36. Mozafari A, Hejazi SF, Baharvand A, Marvi M, Olomi Doran V, Mohebi S, Gharebeigloo M. The Effect of Cardiac Rehabilitation on the Results of 6-Minute Walk Test in Post Angioplasty Cardiac Patients Referred to Shahid Beheshti Hospital in Qom City, Iran. Qom Unive rsity of Medical Sciences Journal. 2015; 9(8): 41-48.
37. Piepoli MF, Davos C, Francis DP, Coats AJ, ExTraMATCH Collaborative. Exercise training meta-analysis of trials in patients with chronic heart failure (ExTraMATCH). Bmj. 2004; 328(7433): 189. [DOI:10.1136/bmj.37938.645220.EE]
38. Hwang CL, Chien CL, Wu YT. Resistance training increases 6-minute walk distance in people with chronic heart failure: a systematic review. J Physiother. 2010; 56(2): 87-96. [DOI:10.1016/S1836-9553(10)70038-2]
39. Sousa N, Mendes R, Abrantes C, Sampaio J, & Oliveira J. A randomized 9-month study of blood pressure and body fat responses to aerobic training versus combined aerobic and resistance training in older men. Exp Gerontol. 2013; 48(8): 727-33. doi: 10.1016/j.exger.2013.04.008. [DOI:10.1016/j.exger.2013.04.008]
40. Fu, T. C., Wang, C. H., Lin, P. S., Hsu, C. C., Cherng, W. J., Huang, S. C., ... & Wang, J. S. (2013). Aerobic interval training improves oxygen uptake efficiency by enhancing cerebral and muscular hemodynamics in patients with heart failure. International journal of cardiology, 167(1), 41-50. [DOI:10.1016/j.ijcard.2011.11.086]
41. Miranda MX, van Tits LJ, Lohmann C, Arsiwala T, Winnik S, Tailleux A, et al. The Sirt1 activator SRT3025 provides atheroprotection in Apoe−/− mice by reducing hepatic Pcsk9 secretion and enhancing Ldlr expression. Eur Heart J. 2015; 36(1): 51-9. doi: 10.1093/eurheartj/ehu095. [DOI:10.1093/eurheartj/ehu095]
42. Satoh A, Stein L, Imai S. The role of mammalian sirtuins in the regulation of metabolism, aging, and longevity, in Histone Deacetylases: the Biology and Clinical Implication. Springer. 2011; 125-162. doi: 10.1007/978-3-642-21631-2_7. [DOI:10.1007/978-3-642-21631-2_7]
43. Russomanno G, Corbi G, Manzo V, Ferrara N, Rengo G, Puca AA, et al. The anti-ageing molecule sirt1 mediates beneficial effects of cardiac rehabilitation. Immun Ageing. 2017; 14: 7. doi: 10.1186/s12979-017-0088-1. [DOI:10.1186/s12979-017-0088-1]
44. Minamino T, Komuro I. Vascular cell senescence: contribution to atherosclerosis. Circ Res. 2007; 100(1): 15-26. [DOI:10.1161/01.RES.0000256837.40544.4a]
45. Saremi A, Sharjerdi S, Kavyani A. The effect of Aerobic Training on metabolic parameters and Serum level of sirtuin1 in Women With type2.Diabetes.JArak unimed Sci. 2016; 19(9): 88-97.
46. Nara R, ScherolinO. Treadmill training increases SIRT1 and PGC-1α protein levels and AMPK phosphorylation in quadriceps of middle-aged rats in an intensity-dependent manne. Mediators Inflamm. 2014; 2014: 1-11.
47. Gurd BJ, Perry CG, Heigenhauser GJ, Spriet LL, Bonen A. High-intensity interval training increases SIRT1 activity in human skeletal muscle. Applied Physiology, Nutrition, and Metabolism. 2010; 35(3):350-7. [DOI:10.1139/H10-030]
48. Ma JK, Scribbans TD, Edgett BA, Boyd JC, Simpson CA, Little JP, et al. Extremely low-volume, high-intensity interval training improves exercise capacity and increases mitochondrial protein content in human skeletal muscle. OJMIP. 2013; 3(04): 202-210. DOI: 10.4236/ojmip.2013.34027 [DOI:10.4236/ojmip.2013.34027]
49. Marton O, Koltai E, Takeda M, Koch LG, Britton SL, Davies KJ, et al. Mitochondrial biogenesis-associated factors underlie the magnitude of response to aerobic endurance training in rats. Pflugers Arch. 2015 Apr;467(4):779-88. doi: 10.1007/s00424-014-1554-7. [DOI:10.1007/s00424-014-1554-7]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2007 All Rights Reserved | Medical Laboratory Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.