Volume 13, Issue 2 (Mar-Apr 2019)                   mljgoums 2019, 13(2): 1-7 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Raeisi M, Ghorbani Bidkorpeh F, Hashemi M, Tepe B, Moghaddam Z, Aman Mohammadi M et al . Chemical Composition and Antibacterial and Antioxidant Properties of Essential Oils of Zataria multiflora, Artemisia deracunculus and Mentha piperita. mljgoums 2019; 13 (2) :1-7
URL: http://mlj.goums.ac.ir/article-1-1168-en.html
1- Cereal Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran
2- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
3- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
4- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Kilis 7 Aralik University, 79000 Kilis, Turkey
5- Medical Education Unit, Shahid Sayad Shirazi Medical Education Center, Gorgan, Iran
6- Department of Food Science and Technology, Faculty of Food Science and Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
7- Department of Food and Drug Control, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran , sma.noori@gmail.com
Abstract:   (9430 Views)
ABSTRACT
             Background and objectives: Utilization of essential oils instead of chemical preservatives has received significant attention in recent years. The present study aims to evaluate chemical composition and antibacterial and antioxidant properties of essential oils of Zataria multiflora, Artemisia deracunculus and Mentha piperita.
             Methods: Chemical profile of the essential oils was analyzed by gas chromatography/mass spectrometry. The microwell dilution and agar disk diffusion methods were used to evaluate the antibacterial properties of the essential oils. Total phenolic content, β-carotene-linoleic acid bleaching test and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays were carried out to determine the antioxidant properties.
             Results: Menthol (39.18%) and mentone (21.64%) were the main components of the essential oil of M. piperita, while estragol (34.75%) and limonene (15.72%) were the major components of the essential oil of A. dracunculus. The main components of the essential oil of Z. multiflora were carvacrol (36.81%) and thymol (33.04%). The essential oils of M. piperita and Z. multiflora showed greater antimicrobial effects. Moreover, Z. multiflora showed the greatest antioxidant activity among the essential oils. The total phenolic content of Z. multiflora was 228.14±0.45 mg gallic acid equivalent/g.
             Conclusion: Given their favorable antioxidant and antimicrobial properties, the essential oils of Z. multiflora, A. deracunculus and M. piperita can be used as natural food preservatives.
             Keywords: Zataria multiflora, Artemisia deracunculus, Mentha piperita, antibacterial effect, antioxidant effect.   
Full-Text [PDF 524 kb]   (1722 Downloads)    
Research Article: Original Paper | Subject: Biochemistry
Received: 2018/12/30 | Accepted: 2018/12/30 | Published: 2018/12/30 | ePublished: 2018/12/30

References
1. Kadariya J, Smith TC, Thapaliya D. Staphylococcus aureus and staphylococcal food-borne disease: an ongoing challenge in public health. Biomed Res Int. 2014; 2014: 827965. doi: 10.1155/2014/827965. [DOI:10.1155/2014/827965]
2. Lüth S, Kleta S, Al Dahouk S. Whole genome sequencing as a typing tool for foodborne pathogens like Listeria monocytogenes–The way towards global harmonisation and data exchange. Trends in Food Science & Technology. 2018; 73: 67-75. [DOI:10.1016/j.tifs.2018.01.008]
3. Carlin F. Bacillus cereus. Diversity and Adaptation to Conditions in the Food Chain. in Institut pasteur de Paris. 2017.
4. Vasant BR, Stafford RJ, Jennison AV, Bennett SM, Bell RJ, Doyle CJ, et al. Mild Illness during Outbreak of Shiga Toxin− Producing Escherichia coli O157 Infections Associated with Agricultural Show, Australia. Emerging infectious diseases. 2017; 23: 1686. [DOI:10.3201/eid2310.161836]
5. Li K, Ye S, Alali WQ, Wang Y, Wang X, Xia X, Yang B. Antimicrobial susceptibility, virulence gene and pulsed-field gel electrophoresis profiles of Salmonella enterica serovar Typhimurium recovered from retail raw chickens, China. Food Control. 2017; 72: 36-42. [DOI:10.1016/j.foodcont.2016.07.032]
6. Sacchetti G, Maietti S, Muzzoli M, Scaglianti M, Manfredini S, Radice M, et al. Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food chemistry. 2005; 91:621-632. [DOI:10.1016/j.foodchem.2004.06.031]
7. Raeisi M, Hashemi M, Aminzare M, Sadeghi M, Jahani T, Keshavarzi H, et al. Comparative Evaluation of phytochemical, antioxidant, and antibacterial properties from the essential oils of four commonly consuming plants in Iran. Journal of food quality and hazards control. 2016; 3: 107-113.
8. Çoban ÖE, Keleştemur GT. Qualitative improvement of catfish burger using Zataria multiflora Boiss. essential oil. Journal of Food Measurement and Characterization. 2017; 11(2): 530-537. [DOI:10.1007/s11694-016-9420-2]
9. Hemalatha T, UmaMaheswari T, Senthil R, Krithiga G, Anbukkarasi K. Efficacy of chitosan films with basil essential oil: perspectives in food packaging. Journal of Food Measurement and Characterization. 2017; 11(4): 2160-2170. [DOI:10.1007/s11694-017-9601-7]
10. Behbahani BA, Shahidi F, Yazdi FT, Mortazavi SA, Mohebbi M. Antioxidant activity and antimicrobial effect of tarragon (Artemisia dracunculus) extract and chemical composition of its essential oil. Journal of Food Measurement and Characterization. 2017; 11(2): 847-863. [DOI:10.1007/s11694-016-9456-3]
11. Çoban Ö, Baydar NG. Brassinosteroid Modifies Growth and Essential Oil Production in Peppermint (Mentha piperita L.). Journal of Plant Growth Regulation. 2017; 36(1): 43-49. [DOI:10.1007/s00344-016-9614-1]
12. Moazeni M, Larki S, Pirmoradi G, Rahdar M. Scolicidal effect of the aromatic water of Zataria multiflora: an in vitro study. Comparative Clinical Pathology. 2015; 24: 1057-1062. [DOI:10.1007/s00580-014-2030-7]
13. Sharififar F, Moshafi M, Mansouri S, Khodashenas M, Khoshnoodi M. In vitro evaluation of antibacterial and antioxidant activities of the essential oil and methanol extract of endemic Zataria multiflora Boiss. Food control. 2007; 18: 800-805. [DOI:10.1016/j.foodcont.2006.04.002]
14. Shokrzadeh M, Chabra A, Ahmadi A, Naghshvar F, Habibi E, Salehi F, Assadpour S. Hepatoprotective effects of Zataria multiflora ethanolic extract on liver toxicity induced by cyclophosphamide in mice. Drug Res (Stuttg). 2015; 65(4): 169-75. doi: 10.1055/s-0034-1370932. [DOI:10.1055/s-0034-1370932]
15. Hashemi M, Ehsani A, Jazani NH, Aliakbarlu J, Mahmoudi R. Chemical composition and in vitro antibacterial activity of essential oil and methanol extract of Echinophora platyloba DC against some of food-borne pathogenic bacteria. Vet Res Forum. 2013; 4(2): 123-127.
16. Moradi M, Hassani A, Ehsani A, Hashemi M, Raeisi M, Naghibi S. Phytochemical and antibacterial properties of Origanum vulgare ssp. gracile growing wild in Kurdistan province of Iran. Journal of food quality and hazards control. 2014; 1(4): 120-124.
17. Aminzare M, Aliakbarlu J, Tajik H. The effect of Cinnamomum zeylanicum essential oil on chemical characteristics of Lyoner-type sausage during refrigerated storage. in Veterinary Research Forum. 2015; 6(1): 31-39.
18. Miraliakbari H, Shahidi F. Antioxidant activity of minor components of tree nut oils. Food Chemistry. 2008; 111(2): 421-427. [DOI:10.1016/j.foodchem.2008.04.008]
19. Aliakbarlu J, Sadaghiani SK, Mohammadi S. Comparative evaluation of antioxidant and anti food-borne bacterial activities of essential oils from some spices commonly consumed in Iran. Food Science and Biotechnology. 2013; 22(6): 1487-1493. [DOI:10.1007/s10068-013-0242-2]
20. Naeini A, Khosravi A, Chitsaz M, Shokri H, Kamlnejad M. Anti-Candida albicans activity of some Iranian plants used in traditional medicine. Journal de Mycologie Médicale. 2009; 19(3): 168-172. [DOI:10.1016/j.mycmed.2009.04.004]
21. Bonjar GS, Farrokhi PR. Anti-bacillus activity of some plants used in traditional medicine of Iran. Nigerian Journal of Natural Products and Medicine. 2004; 8: 34-39.
22. Yildiz PO. The effects of chitosan coatings enriched with thyme oil on the quality of rainbow trout. Journal of Food Measurement and Characterization. 2017;11(3):1398-1405. [DOI:10.1007/s11694-017-9518-1]
23. Hashemi SMB, Raeisi S. Evaluation of antifungal and antioxidant properties of edible coating based on apricot (Prunus armeniaca) gum containing Satureja intermedia extract in fresh wild almond (Amygdalus scoparia) kernels. Journal of Food Measurement and Characterization. 2018; 12: 362-369. [DOI:10.1007/s11694-017-9648-5]
24. Samber N, Khan A, Varma A, Manzoor N. Synergistic anti-candidal activity and mode of action of Mentha piperita essential oil and its major components. Pharmaceutical biology. 2015;53:1496-1504. Pharm Biol. 2015; 53(10): 1496-504. doi: 10.3109/13880209.2014.989623. [DOI:10.3109/13880209.2014.989623]
25. Guerra ICD, de Oliveira PDL, de Souza Pontes AL, Lúcio ASSC, Tavares JF, Barbosa-Filho JM, et al. Coatings comprising chitosan and Mentha piperita L. or Mentha× villosa Huds essential oils to prevent common postharvest mold infections and maintain the quality of cherry tomato fruit. nt J Food Microbiol. 2015; 214: 168-178. doi: 10.1016/j.ijfoodmicro.2015.08.009. [DOI:10.1016/j.ijfoodmicro.2015.08.009]
26. Lesjak M, Simin N, Orcic D, Franciskovic M, Knezevic P, Beara I, et al. Binary and tertiary mixtures of Satureja hortensis and Origanum vulgare essential oils as potent antimicrobial agents against Helicobacter pylori. Phytother Res. 2016; 30(3): 476-84. doi: 10.1002/ptr.5552. [DOI:10.1002/ptr.5552]
27. Lemos MF, Lemos MF, Pacheco HP, Endringer DC, Scherer R. Seasonality modifies rosemary's composition and biological activity. Industrial Crops and Products. 2015; 70: 41-47. [DOI:10.1016/j.indcrop.2015.02.062]
28. Faezeh F, Salome D, Abolfazl D, Reza ZM. Considering the antibacterial activity of Zataria multiflora Boiss essential oil treated with gamma-irradiation in vitro and in vivo systems. Radiation Physics and Chemistry. 2015; 106: 145-150. [DOI:10.1016/j.radphyschem.2014.07.010]
29. Raeisi M, Tajik H, Aminzare M, Sangin Abadi S, Yarahmadi A, Yarahmadi E, et al. The role of nisin, monolaurin, and EDTA in antibacterial effect of Rosmarinus officinalis L. and Cinnamomum zeylanicum Blume essential oils on foodborne pathogens. Journal of Essential Oil Bearing Plants. 2016; 19: 1709-1720. [DOI:10.1080/0972060X.2016.1141070]
30. Fazeli MR, Amin G, Attari MMA, Ashtiani H, Jamalifar H, Samadi N. Antimicrobial activities of Iranian sumac and avishan-e shirazi (Zataria multiflora) against some food-borne bacteria. Food control. 2007; 18(6): 646-649. [DOI:10.1016/j.foodcont.2006.03.002]
31. Oke F, Aslim B, Ozturk S, Altundag S. Essential oil composition, antimicrobial and antioxidant activities of Satureja cuneifolia Ten. Food Chemistry. 2009; 112(4): 874-879. [DOI:10.1016/j.foodchem.2008.06.061]
32. Saei-Dehkordi SS, Tajik H, Moradi M, Khalighi-Sigaroodi F. Chemical composition of essential oils in Zataria multiflora Boiss. from different parts of Iran and their radical scavenging and antimicrobial activity. Food and Chemical Toxicology. 2010; 48: 1562-1567. doi: 10.1016/j.fct.2010.03.025. [DOI:10.1016/j.fct.2010.03.025]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2007 All Rights Reserved | Medical Laboratory Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.