Volume 14, Issue 1 (Jan-Feb 2020)                   mljgoums 2020, 14(1): 20-28 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammadzadeh Rostami F, shalibeik S, Rabi Nezhad Mousavi M. Molecular Characterization and Antibiotic Resistance Pattern of Nosocomial Clinical Isolates in Southeast of Iran. mljgoums 2020; 14 (1) :20-28
URL: http://mlj.goums.ac.ir/article-1-1087-en.html
1- Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan Iran
2- Department of Microbiology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran.,
3- Department of Microbiology, Zahedan University of Medical Sciences, Zahedan, Iran
Abstract:   (5207 Views)
ABSTRACT
          Background and objectives: Nosocomial infections caused by antibiotic resistant bacteria is a life threatening health challenge. This study aimed to determine the frequency of antibiotic resistance genes in clinical isolates from hospitals of Zahedan, southeast of Iran.
           Methods: Overall, 818 isolates were collected from different hospital wards. The isolates were identified using conventional microbiological and biochemical tests. Antibiotic susceptibility pattern was assessed by agar disc diffusion method and determination of minimum inhibitory concentration of a number of antibiotics. Multiplex PCR was performed using specific primers for the detection of resistance genes.
           Results: The most common species were Staphylococcus aureus (25%), Klebsiella pneumoniae (22%) and Pseudomonas aeruginosa (14%). The rate of methicillin resistance among S. aureus, S. epidermidis and S. saprophyticus was 60%, 43% and 24%, respectively. In addition, 28.5% of enterococci isolates were vancomycin resistant. Among gram-negative bacteria, 45% of A. baumannii and 24% of P. aeruginosa were identified as ESBL. A high level of resistance to ampicillin (96%), cefotaxime (89%), gentamicin (89%) and sulfamethoxazole-trimethoprime (60%) was observed in K. pneumoniae.
           Conclusion: Our results highlight the urgent need for an eradication program and a surveillance plan for preventing increased emergence of antibiotic resistant bacteria in the study area.
           Keywords: Bacterial Infections, Drug resistance, Zahedan.
Full-Text [PDF 974 kb]   (905 Downloads)    
Research Article: Original Paper | Subject: Microbiology
Received: 2018/05/29 | Accepted: 2019/06/3 | Published: 2019/12/30 | ePublished: 2019/12/30

References
1. Khazaei S, Khazaei S, Ayubi E. Importance of prevention and control of nosocomial infections in Iran. Iran J Public Health. 47(2):307-308.
2. Stiller A, Schroder C, Gropmann A, Schwab F, Behnke M, Geffers C, et al. ICU ward design and nosocomial infection rates: a cross-sectional study in Germany. J Hosp Infect. 2017; 95(1): 71-75. doi: 10.1016/j.jhin.2016.10.011. [DOI:10.1016/j.jhin.2016.10.011]
3. Vasquez V, Ampuero D, Padilla B. Urinary tract infections in inpatients: that challenge. Revista espanola de quimioterapia : publicacion oficial de la Sociedad Espanola de Quimioterapia. 2017; 30 Suppl 1: 39-41.
4. Cookson B, Morrison D, Marples R. Antibiotic resistance. Nosocomial gram-positive infection. Journal of medical microbiology. 1997; 46(6): 439-42.
5. Leroy O, Beuscart C, Mouton Y. Gram-negative nosocomial infection: incidence, pathogens, compromised host. British journal of clinical practice Supplement. 1988; 57: 27-35.
6. Qiao M, Ying GG, Singer AC, Zhu YG. Review of antibiotic resistance in China and its environment. Environ Int. 2018; 110: 160-172. doi: 10.1016/j.envint.2017.10.016. [DOI:10.1016/j.envint.2017.10.016]
7. Holmes AH, Moore LS, Sundsfjord A, Steinbakk M, Regmi S, Karkey A, et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet. 2016; 387(10014): 176-87. doi: 10.1016/S0140-6736(15)00473-0. [DOI:10.1016/S0140-6736(15)00473-0]
8. Cifuentes M, Silva F, Arancibia JM, Rosales R, Ajenjo MC, Riedel G, et al. Grupo Colaborativo de Resistencia Bacteriana, Chile: recommendations 2014 towards the control of bacteria resistance. Rev Chilena Infectol. 2015; 32(3): 305-18. doi: 10.4067/S0716-10182015000400008. [DOI:10.4067/S0716-10182015000400008]
9. Adamyan LV, Kuzmin VN, Arslanyan KN, Kharchenko EI. Spread of nosocomial infection in obstetric hospitals. Ter Arkh. 2015; 87(11): 109-112. doi: 10.17116/terarkh20158711109-112. [DOI:10.17116/terarkh20158711109-112]
10. Danchaivijitrmd S, Dhiraputra C, Santiprasitkul S, Judaeng T. Prevalence and impacts of nosocomial infection in Thailand 2001. J Med Assoc Thai. 2005 Dec;88 Suppl 10:S1-9.
11. Perez F, Hujer AM, Hujer KM, Decker BK, Rather PN, Bonomo RA. Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrobial agents and chemotherapy. 2007; 51(10): 3471-84. [DOI:10.1128/AAC.01464-06]
12. Zarrilli R, Crispino M, Bagattini M, Barretta E, Di Popolo A, Triassi M, et al. Molecular epidemiology of sequential outbreaks of Acinetobacter baumannii in an intensive care unit shows the emergence of carbapenem resistance. Journal of clinical microbiology. 2004; 42(3):946-53. [DOI:10.1128/JCM.42.3.946-953.2004]
13. Dash M, Padhi S, Pattnaik S, Mohanty I, Misra P. Frequency, risk factors, and antibiogram of Acinetobacter species isolated from various clinical samples in a tertiary care hospital in Odisha, India. Avicenna J Med. 2013; 3(4): 97-102. [DOI:10.4103/2231-0770.120501]
14. Sinha N, Agarwal J, Srivastava S, Singh M. Analysis of carbapenem-resistant Acinetobacter from a tertiary care setting in North India. Indian J Med Microbiol. 2013; 31(1): 60-3. [DOI:10.4103/0255-0857.108724]
15. Gulbudak H, Aslan G, Tezcan S, Ersoz G, Ulger M, Otag F. Investigation of the clonal relationship between nosocomial Acinetobacter baumannii isolates by Rep-PCR. Mikrobiyol Bul. 2014; 48(2): 316-24. [DOI:10.5578/mb.7225]
16. Lee S, Park YJ, Kim M, Lee HK, Han K, Kang CS, et al. Prevalence of Ambler class A and D beta-lactamases among clinical isolates of Pseudomonas aeruginosa in Korea. J Antimicrob Chemother. 2005; 56: 122-7. [DOI:10.1093/jac/dki160]
17. Chanawong A, M'Zali FH, Heritage J, Lulitanond A, Hawkey PM. SHV-12, SHV-5, SHV-2a and VEB-1 extended-spectrum beta-lactamases in Gram-negative bacteria isolated in a university hospital in Thailand. J Antimicrob Chemother. 2001; 48(6): 839-52. [DOI:10.1093/jac/48.6.839]
18. Tayebeh F, Amani J, Moradyar M, Mirhossaini SA. Detection of Klebsiella Pneumoniae 16s rDNA Specific Gene by PCR-ELISA Technique. J Fasa Univ Med Sci. 2016; 5(4): 542-550.
19. Celenza G, Pellegrini C, Caccamo M, Segatore B, Amicosante G, Perilli M. Spread of blaCTX-M-type and blaPER-2 B-Lactamase genes in Clinical isolates from Bolivian hospitals. J Antimicrobial Chemotherapy. 2006; 57(5): 975-8. [DOI:10.1093/jac/dkl055]
20. Madani H, Khazaee S, Kanani M, Shahi M. Antibiotic Resistance Pattern of E.coli Isolated from Urine Culture in Imam Reza Hospital Kermanshah-2006 (Persian). Behbood Journal. 2008; 12(3): 287-95.
21. Molaabaszadeh H, Hajisheikhzadeh B, Mollazadeh M, Eslami K, Mohammadzadeh Gheshlaghi N. Study of Sensibility and Antimicrobial Resistance in Escherichia coli Isolated from Urinary Tract Infection in Tabriz City. JFUMS. 2013; 3 (2):149-154.
22. Kehrenberg C, Friederichs S, de Jong A. Identification of the plasmid-borne quinolone resistance gene qnrS in Salmonella enterica serovar Infantis. J Antimicrob Chemother. 2006; 58(1): 18-22. [DOI:10.1093/jac/dkl213]
23. Cai X, Li C, Huang J, Li Y. Prevalence of plasmid-mediated quinolone resistance qnr genes in Central China. African Journal of Microbiology Research. 2011 Apr 18;5(8):975-8. [DOI:10.5897/AJMR10.102]
24. Pakzad I, Ghafourian S, Taherikalani M, Sadeghifard N, Abtahi H, Rahbar M, et al. qnr Prevalence in Extended Spectrum Beta-lactamases (ESBLs) and None-ESBLs Producing Escherichia coli Isolated from Urinary Tract Infections in Central of Iran. Iran J Basic Med Sci. 2011; 14(5): 458-64. [DOI:10.5897/AJMR11.516]
25. Stephenson S, Brown PD, Holness A, Wilks M. The Emergence of Qnr-Mediated Quinolone Resistance among Enterobacteriaceae in Jamaica. West Indian Med J. 2010; 59(3): 241-4.
26. Namvar AE, Bastarahang S, Abbasi N, Ghehi GS, Farhadbakhtiarian S, Arezi P, et al. Clinical characteristics of Staphylococcus epidermidis: a systematic review. GMS Hyg Infect Control. 2014; 9(3): Doc23.doi: 10.3205/dgkh000243.
27. Zhang S, Sun X, Chang W, Dai Y, Ma X. Systematic Review and Meta-Analysis of the Epidemiology of Vancomycin-Intermediate and Heterogeneous Vancomycin-Intermediate Staphylococcus aureus Isolates. PloS one. 2015; 10(8): e0136082. [DOI:10.1371/journal.pone.0136082]
28. Ho PL, Lo PY, Chow KH, Lau EH, Lai EL, Cheng VC, et al. Vancomycin MIC creep in MRSA isolates from 1997 to 2008 in a healthcare region in Hong Kong. The Journal of infection. 2010; 60(2): 140-5. [DOI:10.1016/j.jinf.2009.11.011]
29. Yan JJ, Tsai SH, Chuang CL, Wu JJ. OXA-type betalactamases among extended-spectrum cephalosporin-resistant Pseudomonas aeruginosa isolates in a university hospital in southern Taiwan. J Microbiol Immunol Infect. 2006; 39(2): 130-4.
30. Guillard T, Moret H, Brasme L, Carlier A, Vernet-Garnier V, Cambau E, et al. Rapid detection of qnr and qepA plasmid-mediated quinolone resistance genes using real-time PCR. Diagn Microbiol Infect Dis. 2011; 70(2): 253-9. doi: 10.1016/j.diagmicrobio.2011.01.004. [DOI:10.1016/j.diagmicrobio.2011.01.004]
31. Wagenlehner E, Niemetz A, Naber G. Spectrum of pathogens and resistance to antibiotics in urinary tract infections and the consequences for antibiotic treatment: study of urology inpatients with urinary tract infections (1994-2001). Urologe A. 2003; 42(1): 13-25. [DOI:10.1007/s00120-002-0265-4]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2007 All Rights Reserved | Medical Laboratory Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.