Search published articles


Showing 4 results for Anti-Bacterial Agents

Mina Parsa , Malahat Ahmadi , Habib Dastmalchi , Aliasghar Tehrani ,
Volume 11, Issue 6 (11-2017)
Abstract

 
ABSTRACT
         Background and Objectives: Nowadays, the prevalence of multidrug-resistant pathogens such as Pseudomonas aeruginosa is increasing worldwide. Many studies have been seeking new treatment strategies to treat infections caused by these microorganisms. Silver nanoparticles (AgNPs) along with L-arginine have significant antimicrobial effects and could be used as alternatives for ineffective drugs.
         Methods: In this study, the antibacterial activity of AgNPs, L-arginine and various concentrations of AgNPs along with L-arginine (12.5 and 25 mg/ml) were investigated against P. aeruginosa PAO1 using the broth macrodilution method.
        Results: Minimum inhibitory concentration of AgNPs, L-arginine and AgNPs combined with 25 and 12.5 mg/ml L-arginine was 15.6 μg/ml, 25 mg/ml, 1.9 μg/ml and 3.9 μg/ml, respectively. Minimum bactericidal concentration of AgNPs, L-arginine and AgNPs combined with 25 and 12.5  mg/ml L-arginine was 31.2 μg/ml, 50 mg/ml, 3.9 μg/ml and 7.8 μg/ml, respectively.
       Conclusion: Our study suggests that AgNPs along with L-arginine can be used as an alternative antibacterial agent against P. aeruginosa, and might be useful for treatment of wound infections.
       Keywords: Nanoparticles, Arginine, Anti-Bacterial Agents, Pseudomonas aeruginosa

Azizollah Ebrahimi , Azimeh Babaaie , Mojtaba Boniadian , Sharareh Lotfalian ,
Volume 13, Issue 3 (5-2019)
Abstract

ABSTRACT
             Background and Objectives: Efflux-based systems may play a role in resistance to fluoroquinolones in Gram-negative pathogenic bacteria. Extracts of some medicinal plants contain molecules that can act as efflux pumps inhibitors. In this study, we aimed to evaluate antibacterial activities of ethanolic and chloroform extracts of Cinnamomum zeylanicum and their possible synergistic activity with ciprofloxacin against some Gram-negative pathogenic bacteria. We also analyzed the extracts for presence of efflux pump inhibitors against the examined bacteria.
             Methods:  Powdered dried leaves and branches of C. zeylanicum were extracted with ethanol (85%) and chloroform by the maceration method. Minimum inhibitory concentrations of the extracts alone or combined with ciprofloxacin and phenylalanine-arginine β-naphthylamide (an efflux pump inhibitor) were determined against Pseudomonas aeruginosa, Acinetobacter bummani, Escherichia coli and Salmonella enteritidis using the double serial microdilution method.
             Results: The extracts of C. zeylanicum inhibited the growth of all studied bacteria. Synergistic effects were noted between the extracts and ciprofloxacin against all tested bacteria other than P. aeruginosa. Ciprofloxacin efflux pumps in E. coli, S. enteritiditis and A. baumannii were inhibited by the extracts of C. zeylanicum.
             Conclusion: The extracts of C. zeylanicum could be used as ciprofloxacin-potentiating agents against some Gram-negative pathogens.
             Keywords: Anti-bacterial agents, Cinnamomum zeylanicum, Bacterial pathogens, Efflux pumps.

Najmeh Jomehpour , Kiarash Ghazvini , Mahshid Jomehpour ,
Volume 13, Issue 3 (5-2019)
Abstract

ABSTRACT
            Background and Objectives: Medicinal and aromatic plants are sources of natural antimicrobial compounds that could be useful replacements for antibiotics. The aim of this study was to assess antimicrobial activity of Crocus sativus stigma and Cinnamomum cassia extracts against some Gram-positive and Gram-negative bacteria.
            Methods: Antimicrobial activity of methanolic and aqueous extracts of the plants was tested against clinical isolates of Klebsiella pneumonia, Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli and Enterococcus using the microdilution method. Minimal inhibitory concentration (MIC) and minimum bactericidal concentration of each extract against the mentioned bacteria were also determined.
            Results: The MIC of the methanolic extract of C. cassia was 80 µg/ml against Enterococcus, K. pneumonia and E. coli. The MIC of the methanolic extract of C. sativus was 160 µg/ml against Enterococcus and S. aureus. The minimum bactericidal concentration of the methanolic extracts of C. sativus and C. cassia was 320 µg/ml against K. pneumonia and 160 µg/ml against Enterococcus.
            Conclusion: The extracts of C. sativus and C. cassia exhibit promising antibacterial activities against clinical isolates of the tested bacteria. Our results suggest that the extract of these plants can be further exploited as potential antibacterial agents against multi-drug resistant bacteria.
            Keywords: Cinnamomum aromaticum, Crocus, Anti-Bacterial Agents.

Maryam Kouhkan, Miri Mahmoody, Jabbar Khalafy, Sima Pourali, Nasser Samadi,
Volume 14, Issue 2 (3-2020)
Abstract

ABSTRACT
             Background and objectives: Antimicrobial resistance is a serious threat to global public health. The overuse and misuse of antibiotics are the most important contributing factors to development of antibiotic resistance. Thus, there is an urgent need to identify and discover new compounds against drug-resistant microorganisms. We have previously synthesized new series of 3-substituted 5H-(1,2,4)triazolo(3',4':2,3) (1,3,4)thiadiazino(5,6-b)quinoxaline derivatives (4a-4f). Here, we evaluate the antimicrobial activity of these derivatives against methicillin-resistant Staphylococcus aureus, S. aureus, Streptococcus pyogenes, Pseudomonas aeruginosa, Escherichia coli, Candida albicans, Candida tropicalis and Candida krusei.
             Methods: The agar well diffusion and agar dilution methods were used for determining inhibition zone diameter and minimum inhibitory concentration during preliminary evaluation of antimicrobial activity.
             Results: All synthesized compounds exhibited antibacterial and antifungal activity against the tested microorganisms.
             Conclusion: Our findings indicate the antimicrobial potential of the six novel synthetic triazolo thiadiazin quinoxaline compounds.
             Keywords: Antimicrobial, Anti-bacterial agents, Antifungal agents, Triazolo, Thiadiazin, Quinoxaline.


Page 1 from 1     

© 2007 All Rights Reserved | Medical Laboratory Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.