Search published articles


Showing 2 results for Ahadi

Maedeh Kiani Abri , Monir Doudi , Ali Mohammad Ahadi ,
Volume 12, Issue 3 (May-Jun 2018)
Abstract

ABSTRACT
          Background and Objectives: Keratinase is an enzyme commonly used in the production of detergents, cosmetics, drugs, leather, and other industries. Considering the high cost of traditional methods for decomposition of feather, hair, hooves, nails, and wool that contain high levels of keratin, their biodegradation with keratinase-producing bacteria can be a valuable solution. The present study aimed for isolation and molecular identification of keratinase-producing bacteria in Qeshm Island and Peyposht village in Iran.
          Methods: Water and sludge samples from the Qeshm Island and Peyposht village were collected. The bacteria isolates were screened for keratinase production using the Lowry method. Effect of pH and temperature was assessed on the production of keratinase and on the growth of the isolates. Colony-polymerase chain reaction was used for molecular identification of the isolates.
          Results: Bacillus berevis and Enterobacter cloacae were isolated in this study. Keratinase production in B. berevis was highest at pH 7.5 and 35 °C. In addition, the highest level of enzyme production by E. cloacae was observed at pH 7 and 37 °C.
          Conclusion: It seems that the bacterial strains isolated from sludge in the study area have relatively favorable keratinase production capacity.
          Keywords: Bacteria, Colony PCR, Identification, Keratinolytic protein, Sewage.
 
 

Saman Shalibeik, Fereshte Ghandehari, Ali-Mohammad Ahadi, Ali-Asghar Rastegari, Mojgan Ghiasian,
Volume 16, Issue 3 (May-Jun 2022)
Abstract

Background and objectives: Bacteriocins are generally active antimicrobial peptides effective against bacteria closely related to the producer. Escherichia coli produce two bacteriocins: colicins and microcins. Microcin J25 (Mcc J25) is an antibacterial peptide that inhibits bacterial transcription by disrupting the nucleotide-uptake channel of bacterial RNA polymerase. The objective of this study was to evaluate antimicrobial activity of MccJ25 produced by the bacteriocinogenic E. coli.
Methods: In this experimental study, 120 clinical specimens were selected from private diagnostic laboratories in Isfahan (Iran) in 2020. Antagonistic activity of isolates was tested by adopting agar plug method. Total DNA was extracted from clinical specimens and polymerase chain reaction (PCR) was performed using specific primers for amplification of the complete sequence of MccJ25 gene. Accuracy of the PCR products was confirmed by direct sequencing. Homology analysis was performed by using BLAST. Data were analyzed with Chromasv2.1.1 software.
Results: Overall, 120 E. coli strains were isolated from the clinical specimens. The antibiotic activity of Mcc J25 was mainly directed at Enterobacteriaceae, including several pathogenic E. coli strains of which 25 had positive well test samples, and about 5 (20%) of the collected clinical samples that were infected with E. coli had the MccJ25 gene.
Conclusions: Based on the results, Mcc J25 has favorable antibacterial potential, which can be further exploited as an alternative to chemical antibiotics.

Page 1 from 1     

© 2007 All Rights Reserved | Medical Laboratory Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.