Volume 10, Issue 6 (Nov-Dec-2016 2016)                   mljgoums 2016, 10(6): 7-13 | Back to browse issues page


XML Print


1- PhD of Food Hygiene , h.naghili@gmail.com
2- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine
3- Department of Health, Faculty of Health,
4- Department of Food Hygiene and Quality Control
5- Doctor of Veterinary Medicine and Master of public health
Abstract:   (11555 Views)

ABSTRACT

          Background and Objective: Several studies have

shown the antimicrobial activity of lactobacilli against Salmonella enterica (serotype typhimurium). The aim of this study was to evaluate the inhibitory potential of metabolites produced by probiotic culture of Lactobacillus casei against S. typhimurium and its impact on S. typhimurium motility and biofilm formation.

         Methods: In order to evaluate the impact of the metabolites, L. casei cell-free culture supernatant (CFCS) was collected by centrifugation of L. casei secondary cultures. Effectiveness of the CFCS against Salmonella was evaluated by the well-diffusion method. In addition, in vitro effect of this treatment on motility in Swarm agar and biofilm formation by the bacteria was investigated.

         Results: Inhibition zone diameters of S. typhimurium were 0.83 and 12.1 mm at concentrations of 50 and 100 μl of Lactobacillus CFCS against the log4 of S. typhimurium, respectively. Moreover, CFCS treatment inhibited the motility and biofilm formation by Salmonella. Concentrations of 5% and 10% were determined as the minimum inhibitory concentrations for motility and biofilm formation by S. typhimurium. Furthermore, effectiveness of the CFCS against Salmonella was dose-dependent (P<0.05).

         Conclusion: L. casei CFCS is able to inhibit the growth, motility and biofilm formation in S. typhimurium.

         Keywords: Anti-Bacterial, Lactobacillus Casei Metabolites, Phenotypic Characteristics of S. typhimurium

Full-Text [PDF 698 kb]   (1421 Downloads)    
Research Article: Original Paper |
Received: 2016/01/25 | Accepted: 2016/01/25 | Published: 2016/09/25 | ePublished: 2016/09/25

References
1. Griffiths M. Quorum-sensing and virulence in foodborne pathogens. In: Griffiths M: Understanding pathogen behavior Virulence, stress response and resistance. Cambridge England, Woodhead Publishing and CRC Press. 2005; 549-597.
2. Miller MB, Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol. 2001; 55:165-99. [DOI:10.1146/annurev.micro.55.1.165]
3. Simões M, Simões LC, Vieira MJ. A review of current and emergent biofilm control strategies. J Food Sci Technol. 2010; 43(4): 573-83. [DOI:10.1016/j.lwt.2009.12.008]
4. Parsek MR, Greenberg EP. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol. 2005; 13(1): 27-33. [DOI:10.1016/j.tim.2004.11.007]
5. Mittelman MW. Structure and functional characteristics of bacterial biofilms in fluid processing operations. J Dairy Sci. 1998; 81(10): 2760-4. [DOI:10.3168/jds.S0022-0302(98)75833-3]
6. Evans JA, Russell SL, James C, Corry JEL. Microbial contamination of food refrigeration equipment. J Food Eng. 2004; 62(3): 225-32. [DOI:10.1016/S0260-8774(03)00235-8]
7. Wong ACL, Cerf O. Biofilms: Implications for Hygiene Monitoring of Dairy Plant Surfaces. Bulletin 302. International Dairy Federation, Brussels, Belgium. 1995; 40-44.
8. CDC. Vital signs: Incidence and trends of infection with pathogens transmitted commonly through food-foodborne diseases active surveillance network, 10 U.S. sites, 1996–2010- Morbidity and Mortality Weekly Report. 2011; 60(22): 749-55.
9. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, et al. Foodborne illness acquired in the United States-major pathogens. Emerg Infect Dis. 2011; 17(1): 7-15. [DOI:10.3201/eid1701.P11101]
10. Steenackers H, Hermans K, Vanderleyden J, De Keersmaecker SCJ. Salmonella biofilms: An overview on occurrence, structure, regulation and eradication. Food Res Int. 2012; 45(2): 502-31. [DOI:10.1016/j.foodres.2011.01.038]
11. Iibuchi R, Hara-Kudo Y, Hasegawa A, Kumagai S. Survival of Salmonella on a polypropylene surface under dry conditions in relation to biofilm-formation capability. J Food Prot. 2010; 73(8):1506-10. [DOI:10.4315/0362-028X-73.8.1506]
12. Lianou A, Koutsoumanis KP. Strain variability of the biofilm-forming ability of Salmonella enterica under various environmental conditions. Int J Food Microbiol. 2012; 160(2): 171-8. [DOI:10.1016/j.ijfoodmicro.2012.10.002]
13. Van Houdt R, Michiels CW. Biofilm formation and the food industry, a focus on the bacterial outer surface. J Appl Microbiol. 2010; 109(4): 1117-31. [DOI:10.1111/j.1365-2672.2010.04756.x]
14. Hartmann HA, Wilke T, Erdmann R. Efficacy of bacteriocin-containing cell-free culture supernatants from lactic acid bacteria to control Listeria monocytogenes in food. Int J Food Microbiol. 2011; 146(2):192-9. doi: 10.1016/j.ijfoodmicro.
15. Das JK, Mishra D, Ray P, Tripathy P, Beuria TK, Singh N, et al. In vitro evaluation of anti-infective activity of a Lactobacillus plantarum strain against Salmonella enterica serovar Enteritidis. Gut Pathog. 2013;5:1-11. DOI: 10.1186/1757-4749-5-11. [DOI:10.1186/1757-4749-5-11]
16. Maleki H, Misaghi A, Amini M, Saidi A, Akbari Noghabi K. Rational evaluation of antimicrobial properties of lactobacilli isolates against some pathogenic microorganisms: a new method comparing the susceptibility of indicator microorganisms. Iran J Vet Med. 2013; 7(4): 243-52.
17. Mariam SH, Zegeye N, Tariku T, Andargie E, Endalafer N, Aseffa A. Potential of cell-free supernatants from cultures of selected lactic acid bacteria and yeast obtained from local fermented foods as inhibitors of Listeria monocytogenes , Salmonella spp. and Staphylococcus aureus. BMC Res Notes. 2014;7:606. DOI: 10.1186/1756-0500-7-606. [DOI:10.1186/1756-0500-7-606]
18. Bayoumi MA, Griffiths MW. Probiotics down-regulate genes in Salmonella enterica serovar typhimurium pathogenicity islands 1 and 2. J Food Prot. 2010;73(3):452-60. [DOI:10.4315/0362-028X-73.3.452]
19. Kim Y, Oh S, Park S, Seo JB, Kim S-H. Lactobacillus acidophilus reduces expression of enterohemorrhagic Escherichia coli O157:H7 virulence factors by inhibiting autoinducer-2-like activity. J Food Prot. 2008; 19(11): 1042-50. [DOI:10.1016/j.foodcont.2007.10.014]
20. Asahara T, Shimizu K, Takada T, Kado S, Yuki N, Morotomi M, et al. Protective effect of Lactobacillus casei strain Shirota against lethal infection with multi-drug resistant Salmonella enterica serovar Typhimurium DT104 in mice. J Appl Microbiol. 2011;110(1):163-73. [DOI:10.1111/j.1365-2672.2010.04884.x]
21. Makras L, Triantafyllou V, Fayol-Messaoudi D, Adriany T, Zoumpopoulou G, Tsakalidou E, et al. Kinetic analysis of the antibacterial activity of probiotic lactobacilli towards Salmonella enterica serovar Typhimurium reveals a role for lactic acid and other inhibitory compounds. Res Microbiol. 2006;157(3): 241-7. [DOI:10.1016/j.resmic.2005.09.002]
22. Rahnema M. Assess common methods used to enhance the antibacterial activity of nisin. Faculty of Veterinary Medicine: Urmia; thesis. 2007.[persian]
23. Tagg JR, Dajani AS, Wannamaker LW. Bacteriocins of Gram-Positive Bacteria. Bacteriol Rev. 1976;40(3):722-56.
24. Bleicher A, Stark T, Hofmann T, Bogovic Matijasić B, I. R, Scherer S, et al. Potent antilisterial cell-free supernatants produced by complex red-smear cheesemicrobial consortia. J Dairy Sci. 2010;93:4497–505. [DOI:10.3168/jds.2010-3244]
25. Tejero-Sari-ena S, Barlow J, Costabile A, Gibson GR, Rowland I. In vitro evaluation of the antimicrobial activity of a range of probiotics against pathogens: Evidence for the effects of organic acids. Anaerobe. 2012;18:530- 8. [DOI:10.1016/j.anaerobe.2012.08.004]
26. Bouttefroy A, Millie're JB. Nisin – curvaticin 13 combinations for avoiding the regrowth of bacteriocin resistant cells of Listeria monocytogenes ATCC 15313. Int J Food Microbiol. 2000;62:65-75. [DOI:10.1016/S0168-1605(00)00372-X]
27. Flint SH, Bremer PJ, Brooks JD. Biofilms in dairy manufacturing plant description, current concerns and methods of control. Biofouling. 1997;11:81–97. [DOI:10.1080/08927019709378321]
28. Sihorkar V, Vyas SP. Biofilm consortia on biomedical and biological surfaces: delivery and targeting strategies. Pharm Res. 2001;18:1254-427. [DOI:10.1023/A:1013073508318]
29. Veran J. Biofouling in food processing: biofilm or biotransfer potential? Food Bioprod Process. 2002;80:292-8. [DOI:10.1205/096030802321154808]
30. Maukonen J, Ma¨tto¨ J, Wirtanen G, Raaska L, Mattila-Sandholm T, Saarela M. Methodologies for the characterization of microbes in industrial environments: a review. J Ind Microbiol Biot. 2003;30:327–56. [DOI:10.1007/s10295-003-0056-y]
31. Russell AD. Mechanisms of Action, Resistance, and Stress Adaptation. In: Davidson PM, Sofos JN, Branen AL: Antimicrobials in food. 3TH edition, United States of America, CRC Press,Taylor & Francis Group. 2005; pp: 633-657.
32. Spoering AL, Lewis K. Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol. 2001;183(23):6746-51. [DOI:10.1128/JB.183.23.6746-6751.2001]
33. Marchand S, De Block J, De Jonghe V, Coorevits A, Heyndrickx M, Herman L. Biofilm Formation in Milk Production and Processing Environments; Influence on Milk Quality and Safety. Compr Rev Food Sci F. 2012;11(2):133-47. [DOI:10.1111/j.1541-4337.2011.00183.x]
34. Annous BA, Fratamico PM, Smith JL. Quorum Sensing in Biofilms: Why Bacteria Behave the Way They Do. J Food Sci. 2009;74(1):R24-R37. [DOI:10.1111/j.1750-3841.2008.01022.x]
35. Roberts AP, Mullany P, Wilson M. Gene transfer in bacterial biofilms. Method Enzymol. 2001;336:60-5. [DOI:10.1016/S0076-6879(01)36578-3]
36. Mireles JR, Toguchi A, Harshey RM. Salmonella enterica serovar Typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. J Bacteriol. 2001; 183(20):5848–54. [DOI:10.1128/JB.183.20.5848-5854.2001]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.