Volume 13, Issue 2 (Mar-Apr 2019)                   mljgoums 2019, 13(2): 34-40 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Seydyousefi M, Fallahmohammadi Z, Moazzami M, Yaghoubi A, Faghfoori Z. Positive Effects of Post-ischemic Forced Treadmill Training on Sensorimotor and Learning Outcomes Following Transient Global Cerebral Ischemia. mljgoums 2019; 13 (2) :34-40
URL: http://mlj.goums.ac.ir/article-1-1183-en.html
1- Department of Physical Education and Sport Sciences, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
2- Faculty of Sport Sciences, University of Mazandaran, Mazandaran, Iran
3- Department of Exercise Physiology, Faculty of Physical Education and Sport Science, Ferdowsi University of Mashhad, Mashhad, Iran
4- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
Abstract:   (5056 Views)
ABSTRACT
            Background and objectives: Stroke is one of the leading causes of death and long-term acquired disability. It is of great importance to seek ways for improving motor, sensory, and cognitive function after stroke and brain injury. In this regard, therapeutic exercise is the most commonly used method of rehabilitation that can significantly reduce the severity of functional damage. The aim of the present study was to investigate effects of eight weeks of forced treadmill training on cognitive and motor functions in ischemic rats.
            MethodsFourteen adult male Wistar rats were divided into an exercise group and a control group (no exercise). Occlusion of both common carotid arteries was made to induce cerebral ischemia. Twenty-four hours after the induction of ischemia, the subjects in the exercise group were subjected to treadmill running, five days a week for eight weeks. The skilled ladder rung walking task was used to evaluate motor function before and after the stroke.
            Results: The number of errors was decreasing in both groups, but significant differences were observed in the motor function between the two groups in the third, fifth, and eighth week.
            Conclusion: Our results suggest that post-ischemic exercise might modulate ischemia-induced hippocampal injury and ameliorate the subsequent memory and motor impairment.
            Keywords:  Stroke, Cerebral Ischemia, Exercise, Treadmill training, sensorimotor.
Full-Text [PDF 572 kb]   (1135 Downloads)    
Research Article: Original Paper |
Received: 2019/01/30 | Accepted: 2019/01/30 | Published: 2019/01/30 | ePublished: 2019/01/30

References
1. Feigin VL, Forouzanfar MH, Krishnamurthi R, Mensah GA, Connor M, Bennett DA, et al. Global and regional burden of stroke during 1990-2010: findings from the Global Burden of Disease Study 2010. Lancet. 2014; 383(9913): 245-54. [DOI:10.1016/S0140-6736(13)61953-4]
2. Rogers JM, Foord R, Stolwyk RJ, Wong D, Wilson PH. General and Domain-Specific Effectiveness of Cognitive Remediation after Stroke: Systematic Literature Review and Meta-Analysis. Neuropsychol Rev. 2018. doi: 10.1007/s11065-018-9378-4. [DOI:10.1007/s11065-018-9378-4]
3. Norrving B, Kissela B. The global burden of stroke and need for a continuum of care. Neurology. 2013; 80(3 Suppl 2): S5-12. doi: 10.1212/WNL.0b013e3182762397. [DOI:10.1212/WNL.0b013e3182762397]
4. Namale G, Kamacooko O, Kinengyere A, Yperzeele L, Cras P, Ddumba E, et al. Risk Factors for Hemorrhagic and Ischemic Stroke in Sub-Saharan Africa. J Trop Med. 2018; 2018: 4650851. doi: 10.1155/2018/4650851. [DOI:10.1155/2018/4650851]
5. Bennett DA, Krishnamurthi RV, Barker-Collo S, Forouzanfar MH, Naghavi M, Connor M, et al. The global burden of ischemic stroke: findings of the GBD 2010 study. Glob Heart. 2014; 9(1): 107-12. doi: 10.1016/j.gheart.2014.01.001. [DOI:10.1016/j.gheart.2014.01.001]
6. Musuka TD, Wilton SB, Traboulsi M, Hill MD. Diagnosis and management of acute ischemic stroke: speed is critical. Cmaj. 2015; 187(12): 887-93. doi: 10.1503/cmaj.140355. [DOI:10.1503/cmaj.140355]
7. Quintana P, Soto D, Poirot O, Zonouzi M, Kellenberger S, Muller D, et al. Acid-sensing ion channel 1a drives AMPA receptor plasticity following ischaemia and acidosis in hippocampal CA1 neurons. J Physiol. 2015; 593(19): 4373-86. doi: 10.1113/JP270701. [DOI:10.1113/JP270701]
8. Mokhtari T, Akbari M, Malek F, Kashani IR, Rastegar T, Noorbakhsh F, et al. Improvement of memory and learning by intracerebroventricular microinjection of T3 in rat model of ischemic brain stroke mediated by upregulation of BDNF and GDNF in CA1 hippocampal region. Daru. 2017; 25(1): 4. doi: 10.1186/s40199-017-0169-x. [DOI:10.1186/s40199-017-0169-x]
9. Ni J, Ohta H, Matsumoto K, Watanabe H. Progressive cognitive impairment following chronic cerebral hypoperfusion induced by permanent occlusion of bilateral carotid arteries in rats. Brain Res. 1994; 653(1-2): 231-6. [DOI:10.1016/0006-8993(94)90394-8]
10. Li W, Huang R, Shetty RA, Thangthaeng N, Liu R, Chen Z, et al. Transient focal cerebral ischemia induces long-term cognitive function deficit in an experimental ischemic stroke model. Neurobiol Dis. 2013; 59: 18-25. doi: 10.1016/j.nbd.2013.06.014. [DOI:10.1016/j.nbd.2013.06.014]
11. Dong W, Yan B, Johnson BP, Millist L, Davis S, Fielding J, et al. Ischaemic stroke: the ocular motor system as a sensitive marker for motor and cognitive recovery. J Neurol Neurosurg Psychiatry. 2013;84(3):337-41. doi: 10.1136/jnnp-2012-303926. [DOI:10.1136/jnnp-2012-303926]
12. Cheatwood JL, Emerick AJ, Kartje GL. Neuronal plasticity and functional recovery after ischemic stroke. Top Stroke Rehabil. 2008; 15(1):42-50. doi: 10.1310/tsr1501-42. [DOI:10.1310/tsr1501-42]
13. Stout JM, Knapp AN, Banz WJ, Wallace DG, Cheatwood JL. Subcutaneous daidzein administration enhances recovery of skilled ladder rung walking performance following stroke in rats. Behav Brain Res. 2013; 256: 428-31. doi: 10.1016/j.bbr.2013.08.027. [DOI:10.1016/j.bbr.2013.08.027]
14. van Praag H, Shubert T, Zhao C, Gage FH. Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci. 2005; 25(38): 8680-5. [DOI:10.1523/JNEUROSCI.1731-05.2005]
15. Kim J, Park JH, Yim J. Effects of respiratory muscle and endurance training using an individualized training device on the pulmonary function and exercise capacity in stroke patients. Med Sci Monit. 2014; 20: 2543-9. DOI:10.1523/JNEUROSCI.1731-05.2005. [DOI:10.1523/JNEUROSCI.1731-05.2005]
16. Chen CC, Chang MW, Chang CP, Chan SC, Chang WY, Yang CL, et al. A forced running wheel system with a microcontroller that provides high-intensity exercise training in an animal ischemic stroke model. Braz J Med Biol Res. 2014; 47(10): 858-68. [DOI:10.1590/1414-431X20143754]
17. Schmidt A, Wellmann J, Schilling M, Strecker JK, Sommer C, Schabitz WR, et al. Meta-analysis of the efficacy of different training strategies in animal models of ischemic stroke. Stroke. 2014; 45(1): 239-47. [DOI:10.1161/STROKEAHA.113.002048]
18. Kim G, Kim E. Effects of treadmill training on limb motor function and acetylcholinesterase activity in rats with stroke. J Phys Ther Sci. 2013; 25(10): 1227-30. doi: 10.1589/jpts.25.1227. [DOI:10.1589/jpts.25.1227]
19. Macko RF, Ivey FM, Forrester LW, Hanley D, Sorkin JD, Katzel LI, et al. Treadmill exercise rehabilitation improves ambulatory function and cardiovascular fitness in patients with chronic stroke: a randomized, controlled trial. Stroke. 2005; 36(10): 2206-11. [DOI:10.1161/01.STR.0000181076.91805.89]
20. Mehrholz J, Pohl M, Elsner B. Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev. 2014(1): Cd002840. DOI: 10.1002/14651858.CD002840.pub.
21. Ammann BC, Knols RH, Baschung P, de Bie RA, de Bruin ED. Application of principles of exercise training in sub-acute and chronic stroke survivors: a systematic review. BMC Neurol. 2014;14:167. doi: 10.1186/s12883-014-0167-2. [DOI:10.1186/s12883-014-0167-2]
22. Moseley AM, Stark A, Cameron ID, Pollock A. Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev. 2003(3): Cd002840. [DOI:10.1002/14651858.CD002840]
23. Yang YR, Wang RY, Wang PS. Early and late treadmill training after focal brain ischemia in rats. Neurosci Lett. 2003; 339(2): 91-4. [DOI:10.1016/S0304-3940(03)00010-7]
24. McEwen BS. Stress and hippocampal plasticity. Annu Rev Neurosci. 1999; 22: 105-22. [DOI:10.1146/annurev.neuro.22.1.105]
25. Ahn JH, Park JH, Park J, Shin MC, Cho JH, Kim IH, et al. Long-term treadmill exercise improves memory impairment through restoration of decreased synaptic adhesion molecule 1/2/3 induced by transient cerebral ischemia in the aged gerbil hippocampus. Exp Gerontol. 2018;103:124-31. doi: 10.1016/j.exger.2018.01.015. [DOI:10.1016/j.exger.2018.01.015]
26. Cechetti F, Worm PV, Elsner VR, Bertoldi K, Sanches E, Ben J, et al. Forced treadmill exercise prevents oxidative stress and memory deficits following chronic cerebral hypoperfusion in the rat. Neurobiol Learn Mem. 2012; 97(1): 90-6. doi: 10.1016/j.nlm.2011.09.008. [DOI:10.1016/j.nlm.2011.09.008]
27. Matsuda F, Sakakima H, Yoshida Y. The effects of early exercise on brain damage and recovery after focal cerebral infarction in rats. Acta Physiol (Oxf). 2011; 201(2): 275-87. [DOI:10.1111/j.1748-1716.2010.02174.x]
28. Shaughnessy M, Michael K, Resnick B. Impact of treadmill exercise on efficacy expectations, physical activity, and stroke recovery. J Neurosci Nurs. 2012; 44(1): 27-35. [DOI:10.1097/JNN.0b013e31823ae4b5]
29. Erfani S, Khaksari M, Oryan S, Shamsaei N, Aboutaleb N, Nikbakht F. Nampt/PBEF/visfatin exerts neuroprotective effects against ischemia/reperfusion injury via modulation of Bax/Bcl-2 ratio and prevention of caspase-3 activation. J Mol Neurosci. 2015; 56(1): 237-43. [DOI:10.1007/s12031-014-0486-1]
30. Bedford TG, Tipton CM, Wilson NC, Oppliger RA, Gisolfi CV. Maximum oxygen consumption of rats and its changes with various experimental procedures. J Appl Physiol Respir Environ Exerc Physiol. 1979;47(6):1278-83. DOI:10.1152/jappl.1979.47.6.1278. [DOI:10.1152/jappl.1979.47.6.1278]
31. Metz GA, Whishaw IQ. The ladder rung walking task: a scoring system and its practical application. J Vis Exp. 2009; (28). pii: 1204. doi: 10.3791/1204. [DOI:10.3791/1204]
32. Metz GA, Whishaw IQ. Cortical and subcortical lesions impair skilled walking in the ladder rung walking test: a new task to evaluate fore- and hindlimb stepping, placing, and co-ordination. J Neurosci Methods. 2002; 115(2): 169-79. [DOI:10.1016/S0165-0270(02)00012-2]
33. Cheatwood JL, Corwin JV, Reep RL. Overlap and interdigitation of cortical and thalamic afferents to dorsocentral striatum in the rat. Brain Res. 2005;1036(1-2):90-100. [DOI:10.1016/j.brainres.2004.12.049]
34. Cheatwood JL, Burnet D, Butteiger DN, Banz WJ. Soy protein diet increases skilled forelimb reaching function after stroke in rats. Behav Brain Res. 2011; 216(2): 681-4. [DOI:10.1016/j.bbr.2010.09.013]
35. Kirino T, Tamura A, Sano K. Selective vulnerability of the hippocampus to ischemia--reversible and irreversible types of ischemic cell damage. Prog Brain Res. 1985; 63: 39-58. [DOI:10.1016/S0079-6123(08)61974-3]
36. Shamsaei N, Khaksari M, Erfani S, Rajabi H, Aboutaleb N. Exercise preconditioning exhibits neuroprotective effects on hippocampal CA1 neuronal damage after cerebral ischemia. Neural Regen Res. 2015; 10(8): 1245-50. doi: 10.4103/1673-5374.162756. [DOI:10.4103/1673-5374.162756]
37. Aboutaleb N, Shamsaei N, Rajabi H, Khaksari M, Erfani S, Nikbakht F, et al. Protection of Hippocampal CA1 Neurons Against Ischemia/Reperfusion Injury by Exercise Preconditioning via Modulation of Bax/Bcl-2 Ratio and Prevention of Caspase-3 Activation. Basic Clin Neurosci. 2016; 7(1): 21-9.
38. Sim YJ, Kim H, Kim JY, Yoon SJ, Kim SS, Chang HK, et al. Long-term treadmill exercise overcomes ischemia-induced apoptotic neuronal cell death in gerbils. Physiol Behav. 2005; 84(5): 733-8. [DOI:10.1016/j.physbeh.2005.02.019]
39. Ploughman M, Attwood Z, White N, Dore JJ, Corbett D. Endurance exercise facilitates relearning of forelimb motor skill after focal ischemia. Eur J Neurosci. 2007; 25(11): 3453-60. [DOI:10.1111/j.1460-9568.2007.05591.x]
40. Shamsaei N, Erfani S, Fereidoni M, Shahbazi A. Neuroprotective Effects of Exercise on Brain Edema and Neurological Movement Disorders Following the Cerebral Ischemia and Reperfusion in Rats. Basic Clin Neurosci. 2017; 8(1): 77-84. [DOI:10.15412/J.BCN.03080110]
41. Ding Y, Li J, Luan X, Ding YH, Lai Q, Rafols JA, et al. Exercise pre-conditioning reduces brain damage in ischemic rats that may be associated with regional angiogenesis and cellular overexpression of neurotrophin. Neuroscience. 2004; 124(3): 583-91. DOI:10.1016/j.neuroscience.2003.12.029. [DOI:10.1016/j.neuroscience.2003.12.029]
42. Lovatel GA, Bertoldi K, Elsnerb VR, Piazza FV, Basso CG, Moyses Fdos S, et al. Long-term effects of pre and post-ischemic exercise following global cerebral ischemia on astrocyte and microglia functions in hippocampus from Wistar rats. Brain Res. 2014;1587:119-26. [DOI:10.1016/j.brainres.2014.08.068]
43. Carro E, Trejo JL, Busiguina S, Torres-Aleman I. Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. J Neurosci. 2001; 21(15): 5678-84. [DOI:10.1523/JNEUROSCI.21-15-05678.2001]
44. Cohen-Cory S, Kidane AH, Shirkey NJ, Marshak S. Brain-derived neurotrophic factor and the development of structural neuronal connectivity. Dev Neurobiol. 2010; 70(5): 271-88. [DOI:10.1002/dneu.20774]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2007 All Rights Reserved | Medical Laboratory Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.