Volume 12, Issue 6 (Nov - Dec 2018)                   mljgoums 2018, 12(6): 12-18 | Back to browse issues page


XML Print


1- Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Islamic Azad University, Central Tehran Branch, Tehran, Iran
2- Professor of Exercise Physiology, Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Islamic Azad University, Central Tehran Branch, Tehran, Iran
3- Professor of Exercise Physiology, Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Islamic Azad University, Central Tehran Branch, Tehran, Iran
Abstract:   (9979 Views)
ABSTRACT
Background and Objectives: Obesity is a global health problem that could lead to cardiovascular disease, diabetes and cancer. Polygenic obesity is caused by multiple factors, such as lack of exercise and excess food intake. In this study, we evaluated effects of 12 weeks of high-intensity interval training (HIIT) and isocratic moderate-intensity training (MIT) on anthropometric indices and insulin resistance in rats fed with a high-fat diet (HFD). 
Methods: Twenty-five male Wistar rats (mean age of 5-6 weeks) were divided into three groups: control group (HFD, N=5), HFD+ MIT (N=10) and HFD+ HIIT (N = 10). After placing the subjects on a HFD for 13 weeks, the exercise groups performed trainings for 12 weeks. 
Results: Body mass index and Lee index decreased significantly in both training groups (P≤0.05). There was no significant difference in insulin resistance between the three groups (P>0.05).
Conclusion: Based on the results, it can be concluded that HIIT is more effective than MIT in reducing some of the obesity markers in obese rats fed with a HFD. However, this type of training has no significant impact on insulin resistance.
Keywords: Obesity, High Intensity Interval Training, High-Fat Diet, Body composition Indexes.
Full-Text [PDF 705 kb]   (1567 Downloads)    
Research Article: Original Paper |
Received: 2018/10/28 | Accepted: 2018/10/28 | Published: 2018/10/28 | ePublished: 2018/10/28

References
1. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. The lancet. 2014; 384(9945): 766-81. [DOI:10.1016/S0140-6736(14)60460-8]
2. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the United States, 2011-2012. Jama. 2014; 311(8): 806-14. [DOI:10.1001/jama.2014.732]
3. Björntorp P. Do stress reactions cause abdominal obesity and comorbidities?. Obesity reviews. 2001; 2(2): 73-86. [DOI:10.1046/j.1467-789x.2001.00027.x]
4. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of US adults. N Engl j Med. 2003; 2003(348): 1625-38. [DOI:10.1056/NEJMoa021423]
5. Must A, Spadano J, Coakley EH, Field AE, Colditz G, Dietz WH. The disease burden associated with overweight and obesity. Jama. 1999; 282(16): 1523-9. [DOI:10.1001/jama.282.16.1523]
6. Spiegelman BM, Flier JS. Obesity and the regulation of energy balance. Cell. 2001; 104(4): 531-43. [DOI:10.1016/S0092-8674(01)00240-9]
7. Vergoni AV, Poggioli R, Bertolini A. Corticotropin inhibits food intake in rats. Neuropeptides. 1986; 7(2): 153-8. [DOI:10.1016/0143-4179(86)90091-0]
8. Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, et al. The human obesity gene map: the 2005 update. Obesity. 2006; 14(4): 529-644. [DOI:10.1038/oby.2006.71]
9. Swithers SE, Ogden SB, Davidson TL. Fat substitutes promote weight gain in rats consuming high-fat diets. Behavioral neuroscience. 2011; 125(4): 512-8. [DOI:10.1037/a0024404]
10. Shin JY, Xun P, Nakamura Y, He K. Egg consumption in relation to risk of cardiovascular disease and diabetes: a systematic review and meta-analysis. The American journal of clinical nutrition. 2013: 146-59. doi: 10.3945/ajcn.112.051318. [DOI:10.3945/ajcn.112.051318]
11. Pan DA, Storlien LH. Dietary lipid profile is a determinant of tissue phospholipid fatty acid composition and rate of weight gain in rats. The Journal of nutrition. 1993; 123(3): 512-9. [DOI:10.1093/jn/123.3.512]
12. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nature Reviews Endocrinology. 2012; 8(8): 457-65. [DOI:10.1038/nrendo.2012.49]
13. Johnson RK, Appel LJ, Brands M, Howard BV, Lefevre M, Lustig RH, et al. Dietary sugars intake and cardiovascular health. Circulation. 2009 Sep 15;120(11):1011-20. [DOI:10.1161/CIRCULATIONAHA.109.192627]
14. Fontana L, Meyer TE, Klein S, Holloszy JO. Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proceedings of the National Academy of Sciences of the United States of America. 2004; 101(17): 6659-63. [DOI:10.1073/pnas.0308291101]
15. Bradley RL, Jeon JY, Liu FF, Maratos-Flier E. Voluntary exercise improves insulin sensitivity and adipose tissue inflammation in diet-induced obese mice. American Journal of Physiology-Endocrinology and Metabolism. 2008; 295(3): E586-94. [DOI:10.1152/ajpendo.00309.2007]
16. Huang P, Li S, Shao M, Qi Q, Zhao F, You J, Mao T, Li W, Yan Z, Liu Y. Research Calorie restriction and endurance exercise share potent anti-inflammatory function in adipose tissues in ameliorating diet-induced obesity and insulin resistance in mice. Nutr Metab (Lond). 2010; 7: 59. doi: 10.1186/1743-7075-7-59. [DOI:10.1186/1743-7075-7-59]
17. Lin S, Thomas TC, Storlien LH, Huang XF. Development of high fat diet-induced obesity and leptin resistance in C57Bl/6J mice. International journal of obesity. 2000; 24(5): 639-646. [DOI:10.1038/sj.ijo.0801209]
18. Ferrante AW. Obesity‐induced inflammation: a metabolic dialogue in the language of inflammation. Journal of internal medicine. 2007; 262(4): 408-14. [DOI:10.1111/j.1365-2796.2007.01852.x]
19. Colberg SR, Sigal RJ, Fernhall B, Regensteiner JG, Blissmer BJ, Rubin RR, et al. Exercise and type 2 diabetes. Diabetes care. 2010; 33(12): e147-67. [DOI:10.2337/dc10-9990]
20. Jelleyman C, Yates T, O'Donovan G, Gray LJ, King JA, Khunti K, et al. The effects of high‐intensity interval training on glucose regulation and insulin resistance: a meta‐analysis. Obesity reviews. 2015; 16(11): 942-61. [DOI:10.1111/obr.12317]
21. Shen Y, Xu X, Yue K, Xu G. Effect of different exercise protocols on metabolic profiles and fatty acid metabolism in skeletal muscle in high‐fat diet‐fed rats. Obesity. 2015; 23(5): 1000-6. [DOI:10.1002/oby.21056]
22. Rocha GL, Crisp AH, de Oliveira MR, Silva CA, Silva JO, Duarte AC, et al. Effect of High Intensity Interval and Continuous Swimming Training on Body Mass Adiposity Level and Serum Parameters in High-Fat Diet Fed Rats. The Scientific World Journal. 2016; 2016: 2194120. doi: 10.1155/2016/2194120. [DOI:10.1155/2016/2194120]
23. Weston M, Taylor KL, Batterham AM, Hopkins WG. Effects of low-volume high-intensity interval training (HIT) on fitness in adults: a meta-analysis of controlled and non-controlled trials. Sports Medicine. 2014; 44(7): 1005-17. [DOI:10.1007/s40279-014-0180-z]
24. Weston KS, Wisløff U, Coombes JS. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med. 2014; 48(16): 1227-34. [DOI:10.1136/bjsports-2013-092576]
25. Adams OP. The impact of brief high-intensity exercise on blood glucose levels. Diabetes, metabolic syndrome and obesity: targets and therapy. 2013; 6: 113-22. doi: 10.2147/DMSO.S29222. [DOI:10.2147/DMSO.S29222]
26. Bedford TG, Tipton CM, Wilson NC, Oppliger RA, Gisolfi CV. Maximum oxygen consumption of rats and its changes with various experimental procedures. Journal of Applied Physiology. 1979; 47(6): 1278-83. [DOI:10.1152/jappl.1979.47.6.1278]
27. Metcalfe RS, Babraj JA, Fawkner SG, Vollaard NB. Towards the minimal amount of exercise for improving metabolic health: beneficial effects of reduced-exertion high-intensity interval training. European journal of applied physiology. 2012; 112(7): 2767-75. [DOI:10.1007/s00421-011-2254-z]
28. Karstoft K, Winding K, Knudsen SH, James NG, Scheel MM, Olesen J, Holst JJ, Pedersen BK, Solomon TP. Mechanisms behind the superior effects of interval vs continuous training on glycaemic control in individuals with type 2 diabetes: a randomised controlled trial. Diabetologia. 2014; 57(10): 2081-93. [DOI:10.1007/s00125-014-3334-5]
29. Cartee GD, Young DA, Sleeper MD, Zierath JU, Wallberg-Henriksson H, Holloszy JO. Prolonged increase in insulin-stimulated glucose transport in muscle after exercise. American Journal of Physiology-Endocrinology And Metabolism. 1989; 256(4): E494-9. [DOI:10.1152/ajpendo.1989.256.4.E494]
30. Batacan RB, Duncan MJ, Dalbo VJ, Buitrago GL, Fenning AS. Effect of different intensities of physical activity on cardiometabolic markers and vascular and cardiac function in adult rats fed with a high-fat high-carbohydrate diet. Journal of Sport and Health Science. 2018; 7(1): 109-119. [DOI:10.1016/j.jshs.2016.08.001]
31. Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science. 2005; 308(5724): 1043-5. [DOI:10.1126/science.1108750]
32. Carter S, Caron A, Richard D, Picard F. Role of leptin resistance in the development of obesity in older patients. Clinical interventions in aging. 2013; 8: 829-44. doi: 10.2147/CIA.S36367. [DOI:10.2147/CIA.S36367]
33. Potteiger JA, Kirk EP, Jacobsen DJ, Donnelly JE. Changes in resting metabolic rate and substrate oxidation after 16 months of exercise training in overweight adults. International journal of sport nutrition and exercise metabolism. 2008; 18(1): 79-95. [DOI:10.1123/ijsnem.18.1.79]
34. Coles CA. Adipokines in healthy skeletal muscle and metabolic disease. Adv Exp Med Biol. 2016; 900: 133-60. doi: 10.1007/978-3-319-27511-6_6. [DOI:10.1007/978-3-319-27511-6_6]
35. Rodgers RJ, Ishii Y, Halford JC, Blundell JE. Orexins and appetite regulation. Neuropeptides. 2002; 36(5): 303-25. [DOI:10.1016/S0143-4179(02)00085-9]
36. Goodpaster BH, Kelley DE, Wing RR, Meier A, Thaete FL. Effects of weight loss on regional fat distribution and insulin sensitivity in obesity. Diabetes. 1999; 48(4): 839-47. [DOI:10.2337/diabetes.48.4.839]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.