Detection of TEM, SHV and CTX-M Antibiotic Resistance Genes in Escherichia coli Isolates from Infected Wounds

Majid Komijani (PhD)
Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran
Majid Bouzari (PhD)
Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
Fateh Rahimi (PhD)
Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
Corresponding author: Majid Bouzari
Address: Department of Biology, Faculty of Sciences, University of Isfahan, Herzajerib St., Isfahan 81746-73441, Iran
Tel: 031-37932459
E-mail: bouzari@sci.ui.ac.ir
Address: Faculty of Science, University of Isfahan, Isfahan, Iran
Received: 24 Sep 2015
Revised: 01 Nov 2015
Accepted: 10 Nov 2017

ABSTRACT

Background and Objective: Escherichia coli is one of the most common causes of hospital-acquired infections. Extended-spectrum β-lactamase (ESBL)-producing E. coli strains are resistant to third-generation cephalosporins. The three main genes involved in ESBL production are TEM, SHV and CTX-M. Detection of ESBL-producing E. coli is of importance for infection control, reduction of excessive antibiotic use and epidemiological surveillance. This study aimed to detect ESBL-producing E. coli strains isolated from wound infections using phenotypic and molecular methods.

Methods: During 2013-early 2015, 86 strains were collected from three hospitals in Isfahan, Iran. Antibiotic susceptibility testing was done using ceftazidime and ceftazidime + clavulanic acid discs. Polymerase chain reaction was used for the detection of the three resistance genes.

Results: The resistance genes SHV, CTX-M and TEM were detected in 49 isolates (56.9%). In addition, 39 isolates (45%) were ESBL-producing strains. According to the results, 5 (5.3%), 14 (16.2%), 19 (22%) and 11 (12.7%) isolates contained the SHV, CTX-M, TEM and CTX-M + TEM genes, respectively. The frequency of CTX and TEM were significantly higher than that of SHV gene (P <0.05). Most of the isolated bacteria were resistant to cefazolin and sensitive to nitrofurantoin.

Conclusions: There is a difference between the frequency of ESBL-positive isolates reported in the phenotypic and genotypic methods, which could be due to the lower sensitivity of the phenotypic method and impact of environmental factors on the emergence of antibiotic resistance.

Keywords: Antibiotic resistance genes, ESBL, TEM, SHV, CTX-M, Escherichia coli.
INTRODUCTION

Bacterial causes of wound infections vary in different geological locations (1). Although *Escherichia coli* is a common commensal gastrointestinal tract bacterium that contributes in the maintenance of human health, it is one of the most common causes of both community- and hospital-acquired infections such as bacteremia, meningitis, wound infection and urinary tract infection (1-3).

Indiscriminate use of antibiotics has increased the prevalence of antibiotic resistance among bacteria (4). Factors such as interconnected travel, horizontal gene transfer and bacterial evolution increase the global burden of diseases caused by antibiotic-resistant pathogens (5). B-lactam antibiotics are the most widely used class of antimicrobial agents for treatment of bacterial infections (6). Resistance of pathogenic bacteria and particularly Gram-negative bacteria to β-lactam antibiotics has become a worldwide problem (7). Production of extended-spectrum β-lactamases (ESBLs) is a significant resistance-mechanism that impedes the antimicrobial treatment of infections caused by *Enterobacteriaceae* (6). According to the Ambler scheme, β-lactamases are divided into four classes (A, B, C and D) (8). ESBL-producing *Enterobacteriaceae* causes more severe infections compared to non-ESBL-producing *Enterobacteriaceae* (9). The main mechanism of function in class A ESBLs is hydrolysis penicillins, cephalosporins (except cephymcins) and monobactams (6). TEM, SHV and CTX-M are the main ESBL-encoding genes. Bacterial cells containing the SHV gene are resistant to broad-spectrum penicillins such as piperacillin and ampicillin but not to the oxyimino substituted cephalosporins and tigecycline. Bacteria containing the TEM gene are resistant to penicillins and first-generation cephalosporins but sensitive to oxyimino cephalosporin. In addition, the CTX-M gene is associated with ceftaxime resistance. There is no direct correlation between the TEM or SHV β-lactamases and CTX-M. CTX-M-type β-lactamases hydrolyze cephalothin or cephaloridine better than benzyl penicillin, and they preferentially hydrolyze cefotaxime over ceftazidine (8). Detection of ESBL-producing *E. coli* is important for infection control, reduction of excessive antibiotic use and epidemiological surveillance (10). Different phenotypic or genotypic methods are used for the detection of ESBL-producing *E. coli* (11). The aim of this study was to detect antibiotic resistance genes (*TEM, SHV* and *CTX-M*) in *E. coli* strains isolated from wound infections using the phenotypic and genotypic methods.

MATERIAL AND METHODS

Overall, 86 isolates were collected from three hospitals in Isfahan during January 2013-February 2015. The study was approved by the Ethics Committee of University of Isfahan, Iran. Basic clinical data for each patient was collected. Wound specimens were collected with sterile swabs and then transferred to laboratory in sterile containers. Pus samples were cultured in blood and BHI agar media, and then incubated aerobically at 37°C for 24 hours.

Biochemical assays (urease, indole, oxidase, citrate, methyl red, Voges-Proskauer, and lactose fermentation on triple sugar iron agar) and motility test were performed on pure clones of the isolates (12). Antimicrobial susceptibility of the isolates was evaluated against various antibiotics (Table 1) using the Kirby-Bauer disk diffusion method according to guidelines from the Clinical and Laboratory Standards Institute (2012) (13). ESBL production was confirmed by inhibition zone diameter of ≥ 5 mm for the combination disc (ceftazidime + clavulanic acid (30 μg/10 μg) compared with the ceftazidime disc alone (13).

DNA was extracted according to a method described previously (12). Resistance genes (SHV, TEM, and CTX-M) and maltose/maltodextrin transporter ATP-binding gene (specific for *E. coli* species) were detected by PCR (14-17). Randomly selected PCR products were sequenced (Macrogen, South Korea). The sequences were registered on GenBank with the following accession numbers: KT321529 (*TEM*), KT321528 (*SHV*), KT321527 (*CTX-M*), and KT321531 (*E. coli*).

GraphPad Prism software (version 6.1, GraphPad Software Inc., USA) and Fisher’s exact test were used for statistical analysis.
RESULTS

The SHV, TEM, CTX-M and maltose/maltodextrin transporter ATP-binding genes were detected by PCR (Figure 1). According to the results of the antibiogram test, most bacteria were resistant to cefazolin while sensitive to nitrofurantoin (Table 1).

The frequency of CTX-M and TEM were significantly higher than that of SHV (P <0.05). However, there was no statistically significant difference in the frequency of CTX-M and TEM. In addition, no bacteria contained SHV and CTX-M, SHV and TEM or all 3 genes at the same time. The highest frequency for the resistance genes (78.94%) was observed in bacterial strains isolated from surgical wounds (Table 2).

Of 86 E. coli isolates, 39 were ESBL-producing strains (45%) isolated from diabetic foot (10), bedsore (13), surgical wound (14) and miscellaneous wound (2) samples. Among the 39 ESBL-producing E. coli, 32 (82%) carried one or two ESBL genes. However, seven ESBL-producing isolates contained no resistance genes. Moreover, 17 non-ESBL-producing isolates contained the resistance genes (Table 2).

Table 1- Results of antimicrobial susceptibility testing and screening of E. coli/strains for ESBL production.

<table>
<thead>
<tr>
<th>Antibiotic disc</th>
<th>Pattern of antimicrobial susceptibility</th>
<th>β-Lactamase inhibitor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sensitive</td>
<td>Intermediate</td>
</tr>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>Amikacin (30 µg)</td>
<td>10</td>
<td>11.6</td>
</tr>
<tr>
<td>Cefepime (30 µg)</td>
<td>44</td>
<td>51.1</td>
</tr>
<tr>
<td>Cefotaxime (30 µg)</td>
<td>8</td>
<td>9.3</td>
</tr>
<tr>
<td>Ceftazidime (30 µg)</td>
<td>40</td>
<td>46.5</td>
</tr>
<tr>
<td>Levofloxacine (5 µg)</td>
<td>43</td>
<td>50</td>
</tr>
<tr>
<td>Cefazolin (30 µg)</td>
<td>6</td>
<td>6.9</td>
</tr>
<tr>
<td>Aztreonam (30 µg)</td>
<td>25</td>
<td>29</td>
</tr>
<tr>
<td>Tetracycline (30 µg)</td>
<td>27</td>
<td>31.3</td>
</tr>
<tr>
<td>Nalidixic acid (30 µg)</td>
<td>17</td>
<td>19.7</td>
</tr>
<tr>
<td>Nitrofurantoin (300 µg)</td>
<td>57</td>
<td>66.2</td>
</tr>
<tr>
<td>Ceftazidime/Clavulanate</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* = Number of isolates

Table 2- Frequency of resistance genes in bacteria isolated from different types of wounds

<table>
<thead>
<tr>
<th>Wound</th>
<th>Total Age range</th>
<th>Sex</th>
<th>SHV</th>
<th>CTX-M</th>
<th>TEM</th>
<th>SHV & CTX-M</th>
<th>SHV & TEM</th>
<th>CTX-M & TEM</th>
<th>SHV & CTX-M & TEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetic foot infection</td>
<td>25 59-78</td>
<td>M 1</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Bed sore</td>
<td>28 19-89</td>
<td>M 18</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Surgical wounds</td>
<td>19 30-75</td>
<td>M 1</td>
<td>8</td>
<td>0</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>14 18-61</td>
<td>M 6</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>86</td>
<td>M 39</td>
<td>5</td>
<td>14</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 3- Frequency of SHV, CTX-M and TEM in ESBL-producing E. coli in our study and some other studies.

<table>
<thead>
<tr>
<th>Country</th>
<th>Number of isolates tested</th>
<th>SHV</th>
<th>CTX-M</th>
<th>TEM</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iran (Our study)</td>
<td>80</td>
<td>12.8</td>
<td>38.4</td>
<td>51.3</td>
<td>(19)</td>
</tr>
<tr>
<td>Iran (North)</td>
<td>100</td>
<td>44</td>
<td>28</td>
<td>49</td>
<td>(24)</td>
</tr>
<tr>
<td>Iran (Tehran)</td>
<td>42</td>
<td>40.5</td>
<td>___</td>
<td>19</td>
<td>(25)</td>
</tr>
<tr>
<td>India</td>
<td>138</td>
<td>66</td>
<td>71</td>
<td>75</td>
<td>(26)</td>
</tr>
<tr>
<td>Spain</td>
<td>112</td>
<td>32</td>
<td>69</td>
<td>6</td>
<td>(27)</td>
</tr>
<tr>
<td>Sweden</td>
<td>81</td>
<td>6</td>
<td>92</td>
<td>63</td>
<td>(28)</td>
</tr>
</tbody>
</table>
This could be due to the difference in the source of samples tested in the two studies. In study of Etok et al. in Nigeria, all E. coli isolates from wound infections were ESBL-producing strains (21). In study of Islam et al. the frequency of ESBL-producing isolates was 55% (22). Based on our findings, the frequency of ESBL-producing E. coli strains isolated from wound infections was 63.7%. The high frequency of these bacterial strains could complicate the treatment of wound infections.

The frequency of the SHV, CTX-M and TEM genes in the ESBL-producing bacteria was 12.8%, 38.4% and 51.3%, respectively. This could be due to the presence of other β-lactamase genes such as OXA, PER, GES, BES and CME, and the structural changes in penicillin-binding proteins that result in resistance to β-lactam antibiotics.

In this study, the frequency of SHV, CTX-M and TEM was 8.4%, 41.6% and 50%, respectively. Study of Fatemi et al. on 41 E. coli strains isolated from bile samples reported the frequency of SHV, CTX-M and TEM as 92%, 80% and 70%, respectively (20), which are higher compared to our findings.

DISCUSSION
Investigation of antibiotic resistance patterns as well as molecular identification of TEM and SHV genes in ESBL-producing bacteria can be useful in epidemiological studies (18). High prevalence of ESBLs has been reported in different countries (8, 11, 19). Considering the high risk of treatment failure in patients infected with ESBL-producing bacteria, determining the frequency of these bacterial strains in different regions could be of great importance (8). In the present study, the frequency of ESBL-positive isolates in the genotypic and phenotypic methods was 56.9% and 45%, respectively. This difference could be related to the lower sensitivity of the phenotypic method, and the influence of environmental factors on emergence of resistance and expression of some resistance genes. On the other hand, seven ESBL-producing E. coli isolates contained none of the three resistance genes studied. This could be due to the presence of other β-lactamase genes such as OXA, PER, GES, BES and CME, and the structural changes in penicillin-binding proteins that result in resistance to β-lactam antibiotics.

In this study, the frequency of SHV, CTX-M and TEM was 8.4%, 41.6% and 50%, respectively. Study of Fatemi et al. on 41 E. coli strains isolated from bile samples reported the frequency of SHV, CTX-M and TEM as 92%, 80% and 70%, respectively (20), which are higher compared to our findings.

This could be due to the difference in the source of samples tested in the two studies. In study of Etok et al. in Nigeria, all E. coli isolates from wound infections were ESBL-producing strains (21). In study of Islam et al. the frequency of ESBL-producing isolates was 55% (22). Based on our findings, the frequency of ESBL-producing E. coli strains isolated from wound infections was 63.7%. The high frequency of these bacterial strains could complicate the treatment of wound infections.

The frequency of the SHV, CTX-M and TEM genes in the ESBL-producing E. coli was 12.8%, 38.4% and 51.3%, respectively. Frequency of CTX-M and TEM was nearly the same, while the frequency of SHV was lower compared to frequency rates reported in study of Rezai et al. on 100 ESBL-producing E. coli in north of Iran (23). This indicates that the frequency of the genes differs in areas of Iran. Differences in frequencies of these genes in other countries (Table 3), highlights the importance of the study of varied genes in different geographical locations. In addition, international travel may play an important role in worldwide spread of multidrug-resistant E. coli. In the present study, we determined the resistance rate of isolates to amikacin (69.7%), cefepime (38.3%), cefotaxime (81.3%),
ceftazidime (43%), levofloxacin (46.5%), cefazolin (89.5%), aztreonam (61.6%), tetracycline (62.7%), nalidixic acid (73.2%) and nitrofurantoin (24.4%). A similar study in nor of Iran reported that 38.1%, 21.4%, 14% and 19% of the E. coli strains isolated from children with diarrhea were resistant to tetracycline, cefotaxime, ceftazidime and aztreonam, respectively (23).

The lower resistance rates reported by the mentioned study in comparison with our study could be due to the difference in source of sampling. In study of Mendonca et al. in Portugal, 91%, 93% and 89% of isolates were resistant to ceftazidime, quinolones and aminoglycoside, respectively, which are much higher than the resistance rates found in our study. This could be related to different antibiotics use policies (19).

CONCLUSION
Compared to previous studies, our findings demonstrate that resistance to the third generation cephalosporins may have been increased, especially during last decade. The deference between results of the phenotypic and genotypic methods indicates the higher sensitivity of the genotypic method. It is recommended continuously monitoring antibiotic resistance patterns, and utilizing molecular method for the detection of ESBL-positive strains.

ACKNOWLEDGMENTS
This study was funded by the Department of Research and Graduate Studies of the University of Isfahan, Iran.

CONFLICT OF INTEREST
The authors declare that there is no conflict of interest.

REFERENCES

Medical Laboratory Journal, Mar-Apr , 2017; Vol 11: No 2
35/ Komijani and colleagues

