Analysis of Plasma Amino Acids Using RP-HPLC and Pre-Column Derivatization with OPA/3-MPA

Fahime Mohammad Abadi (MSc)
Department of Clinical Biochemistry, Biochemistry & Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran

Arezoo Mirfazeli (MD)
Department of Neonatology, Cognitional Malformations Research Center, Golestan University of Medical Sciences, Gorgan, Iran

Hossein Zaeri (MD)
Department of Neonatology, Cognitional Malformations Research Center, Golestan University of Medical Sciences, Gorgan, Iran

Mojgan Nejabat (MSc)
Department of Medicinal Chemistry, School of pharmacy, Mashhad university of Medical Science, Mashhad, Iran

Mahsa Taherizadeh (MSc)
Department of Clinical Biochemistry, Biochemistry & Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran

Mohammad Ariaie (MSc)
Department of Research and Technology, Golestan University of Medical Sciences, Gorgan, Iran

Azadeh Aliarab (MSc)
Department of Biochemistry, Shshid Beheshti university of medical science, Tehran, Iran

Hamidreza Joshaghani (PhD)
Department of Biochemistry, Laboratory Sciences Research Center, Golestan University of Medical Science, Gorgan, Iran

Corresponding Author: Hamidreza Joshaghani
Tel: +98(17)32436102
Email: joshaghani@goums.ac.ir
Address: Golestan University of Medical Sciences, Shastkolla road, Hiran Boulevard, Gorgan, Iran

Received: 19 Oct 2014
Revised: 15 Mar 2015
Accepted: 18 Mar 2015

INTRODUCTION
Amino acids play a key role in various processes. These compounds are proteins’ building blocks that can also act as precursors for biosynthesis of many important biological and physiological substances. They also have an essential role in energy metabolism, neurotransmission and fat transport (1).

Determining the concentration of amino acids is necessary to evaluate the pathophysiological processes of diseases (2). Analysis of these components is one of the most important practical programs in the field of biomedical and pharmaceutical sciences (3).

Measurement of amino acids in different matrices such as plasma, urine and cerebrospinal fluid has attracted a lot of attention (4). During the last 15 years, analysis of amino acids was performed using the ion exchange chromatography based on pre-column derivatization with ninhydrin or o-phthalaldehyde (OPA) (5).

However, this method is somewhat difficult, costly and time-consuming (6). Recently, the effective method of high performance liquid chromatography (HPLC) is used in combination with chemical derivatives in the form of pre- or post-column to overcome these problems. The Pre-column OPA-derivatization is one of the most widely used methods (7, 8).

This compound is an effective derivative factor for amino acids, due to its quick interaction with the first amine group of amino acids that leads to formation of products with high fluorescence properties. Although the isoindole derivatives formed are not stable, accurate results can be obtained using these derivatives (9).

The stability of these derivatives depends on addition of sulfhydryl agents to the derivatives. Some studies indicate that 3-mercaptpropionic acid (3-MPA) produces a more stable product than the common 2-mercaptoethanol amine (2-ME).

This study aimed to analyze main amino acids of the common 25 amino acids, due to its quick interaction with the first amine group of amino acids that leads to formation of products with high fluorescence properties. Although the isoindole derivatives formed are not stable, accurate results can be obtained using these derivatives (9).

MATERIAL AND METHODS
The EDTA plasma samples were obtained from 107 neonates and babies suspected of having aminoacidopathy, after receiving informed consent from parents. The samples were stored at -70 °C until the time of analysis. Analysis of 19 amino acids was performed using KNAUER HPLC system (V7602 10/2003, Germany). This study was based on reverse-phase chromatography and performed using the gradient method. Amino acid analysis was done using column (UCLEOSHELL® RP 18, 2.7 μm, 75mm x 4.0mm ID.). The plasma proteins were precipitated by adding 10% trichloroacetic acid (TCA).

After centrifugation at 10000 rpm for 5 minutes, the supernatant was removed and filtration was done using syringe filter with a 0.45 μm pore size (Whatman SCA Syringe Filter, CHMLAB Inc.). The materials used were obtained at high purity grade (HPLC grade). All solutions used were filtered using Whatman filter papers with 0.45 μm pore size (CHMLAB Inc.). In order to prepare borate buffer, 5.4 g of powdered tetraborate (Sigma, St. Louis, MO) were dissolved with 10 water molecules in 100 ml of water (HPLC grade) and then pH was brought to 9.5 using sodium hydroxide solution. The derivative solution was prepared by adding 2250 μl methanol (MERCK), 250 μl borate buffer and 25 μl 3-MPA (Sigma, St. Louis, MO) to 0.025 g OPA (Sigma, St. Louis, MO). Amino acid separation using this method required two mobile phases. The mobile phase A was prepared by mixing 790 ml of 0.05M sodium acetate buffer in 210 ml of methanol. The mobile phase B was prepared by mixing 250 ml of 0.05M sodium acetate buffer in 750 ml of methanol. The final pH of both phases was in the range of 7.02 - 7.06. The internal standard l-norvaline (Sigma, St. Louis, MO) was obtained at concentration of 1mM. In this study, the standard mixture of amino acids at concentration of 500mM/L was used (Amino acid standards, physiological analytical standard, acids, neutrals, and basics, Sigma, St. Louis, MO).

The concentrations of 10, 25, 50 and 100 mM of the mobile phase A were prepared using the standard. The filtered plasma samples (200 μl) were prepared by adding l-norvaline (50 μl) and methanol (800 μl).

After thorough mixing, incubation was done at laboratory temperature for 5 minutes. After centrifugation at 5000 rpm for 5 minutes, 250 μl of the supernatant was taken and mixed with 100 μl of borate buffer. For derivatization of amino acids, 50 μl of OPA solution was added to the above solution and then incubation was performed for two minutes at room temperature. In this step, the mobile phase A was added as an organic compound to achieve baseline and better separation. After adding hydrochloric acid to the final mixture, 20 μl was injected into the column.
RESULTS

Table 2 shows the coefficient of variation (CV) along with the mean and SD for 19 amino acids of 107 neonates and babies tested with suspected aminoacidopathy. In order to achieve optimum baseline and high efficiency separation of each amino acid, the solvents and the gradient method were optimized. According to the two chromatograms, an appropriate separation of amino acids was achieved. The separation of some amino acids were overlapping, thus minor modification of methanol in the solvents composition led to better separation of these amino acids. The appropriate separation of tryptophan and phenylalanine was achieved by optimizing the methanol/water ratio in solvent B. Figure 1 shows the chromatographic separation of amino acids in the samples and the external standard with concentration of 10 μM/L. The resulted chromatogram in this method indicates an appropriate chromatographic separation of 19 amino acids along with the internal standard l-norvaline.

Table 1 - Program given to the HPLC instrument for amino acid analysis

<table>
<thead>
<tr>
<th>Duration (minutes)</th>
<th>Solvent A (%)</th>
<th>Solvent B (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>60</td>
<td>33</td>
<td>67</td>
</tr>
<tr>
<td>65</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2- Values of the coefficient of variation along with the mean and SD of amino acids

<table>
<thead>
<tr>
<th>SD</th>
<th>Mean</th>
<th>CV of plasma samples (%)</th>
<th>Amino acid (Mol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>165</td>
<td>9.2</td>
<td>Alanine</td>
</tr>
<tr>
<td>3.5</td>
<td>25</td>
<td>14</td>
<td>Arginine</td>
</tr>
<tr>
<td>3.27</td>
<td>34</td>
<td>10</td>
<td>Asparagine</td>
</tr>
<tr>
<td>1/09</td>
<td>8/2</td>
<td>13</td>
<td>Aspartic acid</td>
</tr>
<tr>
<td>0/9</td>
<td>11</td>
<td>8</td>
<td>Citrulline</td>
</tr>
<tr>
<td>13.5</td>
<td>211</td>
<td>6.4</td>
<td>Glutamine</td>
</tr>
<tr>
<td>17</td>
<td>206</td>
<td>8.3</td>
<td>Glycine</td>
</tr>
<tr>
<td>23.26</td>
<td>258</td>
<td>9</td>
<td>Glutamic acid</td>
</tr>
<tr>
<td>4.2</td>
<td>69</td>
<td>6</td>
<td>Histidine</td>
</tr>
<tr>
<td>2.1</td>
<td>51</td>
<td>4.1</td>
<td>Ornithine</td>
</tr>
<tr>
<td>17</td>
<td>61</td>
<td>2.8</td>
<td>Lysine</td>
</tr>
<tr>
<td>6.7</td>
<td>61</td>
<td>11</td>
<td>Leucine</td>
</tr>
<tr>
<td>1.6</td>
<td>14</td>
<td>11.4</td>
<td>Methionine</td>
</tr>
<tr>
<td>1.9</td>
<td>20</td>
<td>9.5</td>
<td>Isoleucine</td>
</tr>
<tr>
<td>1.9</td>
<td>39</td>
<td>9.5</td>
<td>Phenylalanine</td>
</tr>
<tr>
<td>10.4</td>
<td>109</td>
<td>9.5</td>
<td>Valine</td>
</tr>
<tr>
<td>6.4</td>
<td>68</td>
<td>9.4</td>
<td>Tyrosine</td>
</tr>
<tr>
<td>11.3</td>
<td>125</td>
<td>9.1</td>
<td>Threonine</td>
</tr>
<tr>
<td>14.01</td>
<td>137</td>
<td>10</td>
<td>Serine</td>
</tr>
<tr>
<td>2</td>
<td>23</td>
<td>8.7</td>
<td>Tryptophan</td>
</tr>
</tbody>
</table>
DISCUSSION
The present study aimed to assess the RP-HPLC method using the combination of OPA-3MPA derivatives for the separation of 19 amino acids as well as norvaline as the internal standard. According to the CV values obtained for each amino acid, the results indicate an appropriate chromatographic separation for amino acids using this method.

The column containing 2.7 µm particles was used to obtain high resolution. Moreover, the use of methanol and mobile phase A in the sample preparation process resulted in increased stability and peaks with good symmetry and quality.

Consistent with our findings, the Simons et al. study for quality assessment of derivatization using OPA by implementing polar solvents and thiol-containing compounds such as 3-MPA showed that the presence of these compounds have a big impact on the florescence property of isoindole derivatives. These compounds along with borate buffer had very good effects on the fluorescence intensity (11).

Similar to the present study, Turnell et al. demonstrated that the use of methanol alone as an organic compound in the process of sample preparation increases the quality of chromatogram and the resolution of amino acids separation (7). In this study, plasma deproteinization was performed using TCA. In line with the present study, Frank et al. evaluated a rapid and simple method for amino acid analysis using HPLC technique with pre-column derivatization using OPA/3MPA and demonstrated that this simple and optimized method requires a small sample size and the use of OPA/3-MPA combination leads to high repeatability of the results.

They also showed that TCA use for deproteinization has no interference with the chromatogram obtained and considered it a more suitable substance for plasma protein precipitation compared with 5-sulfosalicylic acid (SSA) (12).

In the present study, no adverse effect was observed on the quantitative results of amino acids using the TCA.

Moreover, 3-MPA was used as thiol-group-donor to increase the quality of derivatization. Many studies suggest that
this substance produces far more stable products compared to 2-ME (6, 16).
Kehr et al. study demonstrated that 3-mpa was more suitable than 2-ME for interactions with the OPA reagent, due to production of more stable products. Furthermore, this interaction is highly polarized due to the presence of additional carboxyl groups in the thiol group of this compound, which optimizes washing procedure in gradient chromatography (17).
Schwarz et al. study aimed to use RP-HPLC along with pre-column derivatization using OPA-3MPA for amino acid analysis and compared it with ion exchange chromatography (IEC). They demonstrated that HPLC had a good correlation with the IEC technique (0.89 ≤r ≤1.00) with linearity higher than 2500 mol/μl, and recommended it as a suitable technique for separation of clinically important amino acids (18).

CONCLUSION

The reverse-phase chromatography with fluorescence intensity measurement using OPA-3MPA combination is a reliable and accurate method for measuring plasma amino acids.

ACKNOWLEDGEMENTS

This study has been supported by the Laboratory Sciences Research Center, Golestan University of Medical Sciences. The authors gratefully acknowledge the financial support from the Research Center. The help of Taleghani hospital, Sayyad Shirazi hospital, Sina laboratory and Kavosh laboratory staff and the personnel in sample collection is appreciated.

CONFLICT OF INTEREST

The authors declare no conflicts of interest regarding this manuscript.

REFERENCES


