The Effects of Basil on Blood Glucose Changes and Testosterone Levels in Streptozotocin Include Diabetic Rats

Arash Khaki (PhD)
Department of Pathobiology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
Corresponding Author: Arash Khaki
Email: khaki@iaut.ac.ir
Tel: +989143138399
Address: Department of Pathobiology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
Received: 06 May 2014
Revised: 22 May 2014
Accepted: 02 Jun 2014

ABSTRACT

Background and Objective: According to Iranian, Asian, Indian, and Chinese traditional medicine, basil is used in the treatment of different diseases. In this study, the effect of basil on lowering the blood glucose was examined in healthy and diabetic rats.

Methods: Sixty Wistar rats were divided into a control group (n=10), a basil receiving group (n=20) and a diabetic group (n=30) (60 mg/kg Streptozotocin- Intraperitoneal injection) and the rats in each group received basil orally in pairs. Forty-eight hours after injection of streptozotocin, 2 and 4 mg/kg doses of basil were prescribed orally for the diabetic group daily for 45 days. In end of study for record serum testosterone, 5 cc blood was sampled from each rat.

Results: There was a significant correlation between the oral administration of 2 and 4 mg/kg doses of basil and reduced blood glucose level and testosterone changes in the diabetic groups (P<0.05). Twenty-four hours after the first administration, basil caused a significant decrease in the blood glucose level and this effects continued for 24, 48, and 72 hours, respectively. In contrast, basil had no hypoglycemic effect in the healthy rats.

Conclusion: The results indicated that 2 and 4 mg/kg doses of basil had significant hypoglycemic effects on the diabetic groups and compensated for the testosterone level in diabetic rats, but had no effect on the healthy rats.

Keywords: Streptozotocin, Testosterone, Ocimum Basilicum, Diabetes Mellitus.
INTRODUCTION

According to the Iranian traditional medicine, some herbs can be effective in the treatment of infertility, including fenugreek, ginger, nettle, raspberries, bananas, cauliflower, onions, red and green pepper, licorice, and pumpkin seeds. There is a growing interest in identifying antioxidants to understand the mechanism of the effect of damaging factors on vital tissues through oxidation and release of free radicals and the bioactive compounds in herbal extracts are of particular importance, because they are obtained from the natural resources and are compatible with vital systems. Hyperglycemia affects the function of different organs, such as liver in the long term. Liver dysfunction is commonly seen in diabetic patients, especially those who have poorly controlled blood glucose (1). Diabetes mellitus includes a syndrome that disrupts metabolism of fats, carbohydrates, and proteins through increased blood glucose and increases the risk of vascular diseases (2, 3). Increased oxidative stress and changes in the level of antioxidants significantly contribute to the pathogenesis of diabetes mellitus (4-6). Although the exact mechanism of diabetes mellitus has not been well known, increased production of free radicals is among its main damaging mechanisms (7-9). Diabetes considered as an endocrine disease in which the regulation of carbohydrate metabolism disrupted (10). These changes will increase the production of free radicals (11-13). The presence of antioxidants, such as vitamins and flavonoids in the diet can have protective effect in diabetic patients (14-16). Given the importance of basilas an aromatic and therapeutic herb in the diet and Iranian traditional medicine, this study aimed to examine the effect of oral administration of basil on lowering the blood glucose in healthy and diabetic rats.

MATERIAL AND METHODS:

Fresh basil was bought in the summer and was dried using shadow-open-air method. The dried leaves were milled and kept in a refrigerator. Each rat used 3 gr of the powder daily for 45 days. Phamacia & Upjohn:USA) was dissolved in 0.5 ml of distilled water and was injected intraperitoneally. Then, the blood glucose level was measured every 24 hours. After 24 hours, a significant decrease in blood glucose level was observed and these effects remained for 7 days (10).

Blood samples were taken to measure the level of blood glucose from the tail vein of the rats before injecting streptozotocin and 48 hours after injecting streptozotocin. To measure the blood glucose level, one touch glucometer (Lifescan; Johnson & Company; Germany) was used. The rats whose blood glucose was 300 mg/dl were selected for experiment. Male Wistar rats weighing 250±10 gr were randomly divided into healthy and diabetic groups. The study was conducted using two protocols. In the first protocol, the healthy rats orally received dried basil powder. The healthy rats receiving this herb were divided into 3 subgroups of 10 rats. They received normal saline (1 ml), dried basil orally, and dried basil mixed with the food at a rate of 2 and 4 mg/kg, respectively. The rats' blood glucose levels were measured immediately and also 1, 2, 4, 6, and 8 hours after intraperitoneal injection of streptozotocin (60 mg/kg). One of the subgroups, as the diabetic control group, received normal saline and the other two subgroups, as the treatment groups, orally received 2 and 4 mg/kg of basil powder, respectively, 72 hours after injection of streptozotocin and every 10 hours after the first administration of the extract. The blood glucose levels of these rats were measured before injecting streptozotocin, as well as 50, 68, 88, and 119 hours after the injection.

Blood testosterone level were measured using radioimmunoassay kits (Biosource, Belgium). ANOVA was used to analyze and compare the results in the groups.

RESULTS

Twenty-four hours after the intraperitoneal injection of a single dose of 60 mg/kg streptozotocin into rats, a significant increase in the glucose levels was observed in all groups (P<0.001), so that the blood glucose level in the control group was about 25 times its initial value. This increase in blood glucose level continued for 7 days.
The consumption of dried powder of basil orally at both doses significantly reduced the STZ-induced blood glucose 24 hours after the first administration of extract (P<0.05) and these effects remained for 72, 48, and 24 hours, respectively. Time had no significant effect on the blood glucose level in diabetic rats. The results of hormone analysis indicated a significant reduction in the testosterone level of diabetic groups compared with that of the control group (P<0.05). Also, the reduction in the level of this hormone was significantly compensated for the diabetic groups receiving basil (P<0.05).

DISCUSSION

There are many compounds, whose anti-diabetic effects have been proven, including quercetin, peptides, amines, lipids, and flavonoids (12, 13). Disrupted glucose metabolism and incidence of hyperglycemia cause the genes associated with storage of fatty acids become activated in the liver cells (4). Flavonoids are antioxidants found in fruits, vegetables, tea, and black grapes (17-20). This study clearly indicated that some antioxidants existing in the herbs have a significant hypoglycemic effect in diabetic rats, while they have no effect on lowering the blood glucose in healthy animals. In other words, the ethanol extract of these herbs, like Biguanidin medications act like metformin and these medications act like a euglycemic factor. After administration of basil at doses of 2 and 4 mg/kg, the measurement of blood glucose in healthy animals indicated that basil had no effect on lowering blood glucose level in healthy animals, but when it was used 48 hours after the STZ injection, the blood glucose levels of animals significantly reduced (P<0.05). The results also indicated that the hypoglycemic effect of basil in diabetic animals at doses of 2 and 4 mg/kg significantly compensated for the testosterone level in the blood (P<0.05). Dose-independent effects and different effects at different doses can be attributed to blood glucose increasing constituents in the plant. Mechanisms suggested for antioxidant compounds existing in some plants, including tannins and terpinoids, quercetin, myricetin, peptides, and flavonoids include stimulation of glycogenesis, blocking potassium channels in pancreatic beta cells, and regulation of intestinal glucose absorption (12). Due to the flavonoid compounds existing in basil, its anti-diabetic effect in diabetic rats seems to be due to these flavonoids (4).

CONCLUSION

It concluded reducing blood sugar has beneficial effects on serum testosterone regulation level.

ACKNOWLEDGMENTS

I would like to thank the Department of Pathology, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University for their assistance in this study.

CONFLICT OF INTEREST

There are no conflicts of interest.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Blood glucose (Mg/dl)</th>
<th>Testosterone (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control group</td>
<td>106.7±0.05</td>
<td>1.65±0.05</td>
</tr>
<tr>
<td>2mg/kg basil</td>
<td>108.6±0.05</td>
<td>3.05±0.05*</td>
</tr>
<tr>
<td>4mg/kg basil</td>
<td>111.5±0.05</td>
<td>2.99±0.05*</td>
</tr>
<tr>
<td>Diabetic group</td>
<td>376.5±0.05**</td>
<td>0.85±0.05*</td>
</tr>
<tr>
<td>Diabetic group receiving 2mg/kg</td>
<td>280.6±0.05*</td>
<td>1.05±0.05*</td>
</tr>
<tr>
<td>Diabetic group receiving 4mg/kg</td>
<td>265.5±0.05*</td>
<td>1.15±0.05*</td>
</tr>
</tbody>
</table>

*: P value < 0.05
**: P value < 0.001
REFERENCES