Determination of Antibiotic Resistance Pattern and frequency of CTX-M, TEM, and SHV β-Lactamase Encoding Genes among Shigella Isolates from Inpatients in Tehran, Iran

Shadi Beladi Ghannadi (MSc)
Department of Biology, Faculty of Science, Islamic Azad University Islamshahr Branch, Islamshahr, Iran
Maryam Ghane (PhD)
Department of Biology, Faculty of Science, Islamic Azad University Islamshahr Branch, Islamshahr, Iran
Laleh Babaeekhou (PhD)
Department of Biology, Faculty of Science, Islamic Azad University Islamshahr Branch, Islamshahr, Iran
Corresponding author: Maryam Ghane
Email: ghane@iau.ac.ir
Tel: +98-2156358105
Address: Islamic Azad University, Islamshahr Branch, Islamshahr, Iran
Received: 9 Jun 2018
Revised: 02 Dec 2018
Accepted: 2 Dec 2018

This work is licensed under a Creative Commons Attribution 4.0 License.

ABSTRACT

Background and Objectives: The emergence of extended-spectrum β-lactamase (ESBL)-producing Shigella spp. is becoming a health concern worldwide. This study aimed to investigate antibiotic resistance pattern and frequency of \(\text{bla}_{\text{CTX-M}}, \text{bla}_{\text{SHV}}, \) and \(\text{bla}_{\text{TEM}}\) genes among Shigella isolates from patients in hospitals of Tehran, Iran.

Methods: In this cross-sectional study, 52 non-repeated Shigella strains were isolated from hospitalized patients in Milad, Emam Khomeini and Shariati hospitals in Tehran (Iran) from November 2015 to December 2016. Bacterial identification, serotyping, and antimicrobial susceptibility testing were performed according to the standard guidelines. The \(\text{bla}_{\text{CTX-M}}, \text{bla}_{\text{SHV}}, \) and \(\text{bla}_{\text{TEM}}\) resistance genes were identified using multiplex polymerase chain reaction.

Results: Among 52 Shigella isolates, S. sonnei (44.2%) was the predominant species, followed by S. flexneri and S. dysenteriae (23%). Over 67% of the isolates were multidrug resistant. The highest rates of resistance were observed against cefalotin (67.3%), tetracycline (67.3%), amikacin (63.5%), trimethoprim-sulphamethoxazole (48.1), and ampicillin (42.3%). The lowest resistance rate was against ciprofloxacin (1.9%). We detected the \(\text{bla}_{\text{TEM}}\) and \(\text{bla}_{\text{CTX-M}}\) genes in 61.5% and 19.2% of the isolates, respectively. However, the \(\text{bla}_{\text{SHV}}\) gene was not detected in any of the isolates. In addition, 16.4% of the isolates harbored the \(\text{bla}_{\text{TEM}}\) and \(\text{bla}_{\text{CTX-M}}\) genes simultaneously. Ciprofloxacin was the most effective antibiotics according to the ESBL genes distribution.

Conclusion: Our findings indicate the high prevalence of multidrug resistance and ESBL genes in Shigella isolates, which elucidates the need for appropriate infection control measures for limiting the spread of resistant strains.

Keywords: Shigella, Multiplex Polymerase Chain Reaction, Drug Resistance.
INTRODUCTION

Shigellosis is a global human health problem and the leading cause of diarrhea, which results in about 700,000 deaths per year worldwide (1). Despite the recent public health improvements, incidence of shigellosis is still being reported regularly (2, 3). The genus Shigella belongs to the Enterobacteriaceae family and consists of four subgroups according to their biochemical and serological properties: A (Shigella dysenteriae), B (Shigella flexneri), C (Shigella boydii), and D (Shigella sonnei). All Shigella species can cause shigellosis, but S. flexneri and S. sonnei are the predominant causative agents in developing and industrialized countries, respectively (4).

Antibiotic therapy in patients with shigellosis can help reduce the duration of illness, shedding of the organism in the feces, and the risk of person-to-person spread. A range of antibiotics is effective for the treatment of shigellosis. However, treatment options are limited due to the emergence of multidrug-resistant (MDR) strains. The World Health Organization (WHO) has recommended ciprofloxacin as the first-line treatment (5), but increased resistance to this antibiotic and other fluoroquinolones has been reported in many countries (2, 6). Azithromycin, mecillinam, and ceftriaxone are also considered to be effective for treatment of shigellosis (5).

The emergence of resistance to third-generation cephalosporins (3GC) in Shigella spp. is an important public health concern, mainly in developing countries (7). Resistance to 3GC is largely due to production of extended-spectrum β-lactamases (ESBLs), which is often plasmid-mediated (8). Most ESBLs are derivatives of the TEM and SHV β-lactamase families, but CTX-M β-lactamases have also been associated with ESBL-producing strains. These β-lactamases show greater activity against cefotaxime than ceftazidime, but increased activity against ceftazidime can occur due to point mutations (9).

CTX-M, SHV, and TEM type ESBL producing Shigella species have been identified in different parts of the world (6, 8, 10). Studies on ESBL-producing Shigella isolates have revealed presence of insertion element upstream of the blaCTX,M gene, which may contribute to the mobility and dissemination of the genes to other bacteria (8). The frequency of ESBL-producing Shigella species is increasing in Iran (11, 12). According to studies in Iran, the prevalence of ESBL-producing Shigella strains is higher than the rates observed in many other countries (11, 13). Studying the role of these isolates in infectivity and continuous monitoring of ESBL genes may be beneficial for determining appropriate treatment and control strategies in Iran. Therefore, the present study was conducted to evaluate antibiotic susceptibility profiles and to screen the presence of blaTEM, blaCTX,M, and blaSHV genes among clinical isolates of Shigella.

MATERIALS AND METHODS

This cross-sectional study was conducted between November 2015 and December 2016 at three teaching hospitals in Tehran, Iran. Stool samples were collected from patients admitted with symptoms of diarrhea prior to administration of antibiotics. Samples were immediately transferred to laboratory and then inoculated on xylose lysine deoxycholate agar (Merck, Germany). The plates were incubated at 37 ºC for 24 hours and then Shigella suspected colonies were examined by conventional biochemical tests, including triple sugar iron agar, urea agar, SIM medium and IMVIC (indole, methyl red, Voges-Proskauer, and citrate) (14). Specific antisera (DIFCO, U.S.A) were used for serogrouping of Shigella isolates using a slide agglutination test (15). The study was approved by the Ethics Committee of Islamic Azad University of Tehran Medical Sciences (No: IR.IAU.TMU.REC.1396.275).

Antibiotic susceptibility testing was performed using the Kirby-Bauer disk diffusion method, according to CLSI guidelines (2017). The following antibiotic disks were used in the susceptibility testing: amikacin (30 μg), tetracycline (30 μg), nalidixic acid (30 μg), ciprofloxacin (5 μg), furazolidone (100 μg), cefotaxim (30 μg), doxycycline (30 μl), trimethoprim-sulfamethoxazole (25 μg), cefazolin (30 μg), gentamicin (120 μg), ceftriaxone (30 μg), and ceftazidime (30 μg) (Mast Diagnostics, UK). In addition, E. coli ATCC 25922 was used as the control strain (16). To confirm ESBL production, combination disk test using cefotaxime and ceftazidime disks (30 μg) with and without clavulanic acid (10 μg) was carried out on
Mueller Hinton agar (Merck, Germany) according to CLSI guidelines. Growth inhibition zone around cefotaxime or ceftazidime disks combined with clavulanic acid was compared with that around cefotaxime or ceftazidime disks alone. Growth inhibition zone diameter of >5mm with clavulanic acid than without confirmed ESBL production (16). Boiling method was used for extraction of DNA from pure colonies after an overnight growth of Shigella isolates on Luria-Bertani agar (Oxoid, UK). Concentration of the extracted DNA was assessed by a spectrophotometer (Genway, England). Multiplex polymerase chain reaction (PCR) was performed using specific primers for simultaneous detection of the **bla**_{SHV}, **bla**_{CTX-M}, and **bla**_{TEM} (Table 1). PCR reactions were carried out in a final volume of 25 μl containing 2 μl DNA solution, Master Mix (CinnaGen Co., Iran), and 10 pmol of each primer. PCR amplification conditions were as follows: initial denaturation at 95 °C for 15 min, 30 cycles of denaturation at 94 °C for 30 s, annealing at 60 °C for 30 s, extension at 72 °C for 2 min, followed by final extension at 72 °C for 10 min (17). *Klebsiella pneumoniae* ATCC 700603 was used as positive control.

SPSS statistical software (version 20; SPSS Inc., Chicago, IL, USA) was used for data analysis. The chi-square test was used to evaluate significant differences in antimicrobial resistance and the correlation between resistance genes and antibiotics resistance. A P-value of less than 0.05 was considered statistically significant.

RESULTS

Of 945 samples collected during the study period, 52 Shigella strains were isolated. Among these isolates, *S. sonnei* was the predominant species (n=23, 44.2%), followed by *S. flexneri* (n=12, 23%), *S. dysenteriae* (n=12, 23%), and *S. boydii* (n=5, 9.6%). Figure 1 shows the antimicrobial resistance patterns of Shigella isolates against the tested antibiotics. Highest rate of resistance was against cefalotin (67.3%), tetracycline (67.3%), amikacin (63.47%), trimethoprim-sulphamethoxazole (48.1), ampicillin (42.3%), and doxycycline (32.7%). Moderate to low rate of resistance was observed against nalidixic acid (23.1%), ceftriaxone (19.2%), azithromycin (11.5), ceftazidime (9.6%), gentamicin (11.5%), and ciprofloxacin (1.9%). The isolates showed intermediate resistance to doxycycline (26.9%), trimethoprim-sulphamethoxazole (23.1%), cefazoline (17.3%), and gentamicin (17.3%). All Shigella isolates were resistant to nalidixic acid, but all *S. flexneri*, *S. dysenteriae*, and *S. boydii* isolates were sensitive to ciprofloxacin.

<table>
<thead>
<tr>
<th>Genes</th>
<th>Oligonucleotide sequence (5' to 3')</th>
<th>Amplicon size (bp)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>bla<sub>SHV</sub></td>
<td>ATGCGTTATATTCGCCTGTG TGCTTTGTTATTCGGGCCAA</td>
<td>747</td>
<td>(18)</td>
</tr>
<tr>
<td>bla<sub>TEM</sub></td>
<td>TCGCCGCATACACTATTCTCAGAATGA ACGCTCCCGGCTCCAGATTTAT</td>
<td>445</td>
<td>(17)</td>
</tr>
<tr>
<td>bla<sub>CTX-M</sub></td>
<td>ATGTGCAGCACCAGAATGAAGTGAATGGC TGGGTAAAGTAAGTGACCAGAATCAGCGG</td>
<td>593</td>
<td>(19)</td>
</tr>
</tbody>
</table>

Figure 1-Antibiotic susceptibility pattern of Shigella isolates to various antibiotics. Tri/Sul*: trimethoprim/sulfamethoxazole
All 52 Shigella isolates were also tested for the presence of the \(\text{bla}_{\text{TEM}} \), \(\text{bla}_{\text{SHV}} \), and \(\text{bla}_{\text{CTX-M}} \) genes. All isolates were negative for \(\text{bla}_{\text{SHV}} \), but 32 (61.54%) isolates harbored \(\text{bla}_{\text{TEM}} \). Ten (19.23%) isolates contained \(\text{bla}_{\text{CTX-M}} \) and seven isolates (13.46%) carried both \(\text{bla}_{\text{TEM}} \) and \(\text{bla}_{\text{CTX-M}} \). Figure 2 displays the PCR gel electrophoresis of the \(\text{bla}_{\text{TEM}} \), \(\text{bla}_{\text{CTX-M}} \), and \(\text{bla}_{\text{SHV}} \) genes. The frequency of \(\text{bla}_{\text{TEM}} \) was highest in \(S.\,\text{dysenteriae} \) (83.3%), followed by \(S.\,\text{sonnei} \) (60.87%). However, the frequency of simultaneous harboring of \(\text{bla}_{\text{TEM}} \) and \(\text{bla}_{\text{CTX-M}} \) was highest among \(S.\,\text{sonnei} \) isolates (Figure 3).

Strains resistant to three or more classes of antibiotics were identified as MDR (20). Multidrug resistance was detected in 15 (65.2%) \(S.\,\text{sonnei} \), 10 (83.3%) \(S.\,\text{dysenteriae} \), 8 (66.6%) \(S.\,\text{flexneri} \), and 1 (20%) \(S.\,\text{boydii} \) isolates. Multidrug resistance profiles of \(S. \) _igella_ isolates are reported in Table 3. Phenotypic evidence of ESBL production was observed in 19 (36.5%) \(S. \) _igella_ isolates, among which \(S.\,\text{dysenteriae} \) (7/12, 58.3%) was the predominant ESBL producer, followed by \(S.\,\text{flexneri} \) (4/12, 33.3%), \(S.\,\text{sonnei} \) (7/23, 30.4%), and \(S.\,\text{boydii} \) (1/5, 20%).

All MDR \(S. \) _igella_ strains carried at least one \(\text{bla} \) gene (Table 3). The results showed that all \(\text{bla}_{\text{TEM}} \)-containing \(S. \) _igella_ strains were resistant to cefalotin, 75% were resistant to tetracycline, amikacin, and cefazolin, 72% were resistant to trimethoprim-sulfamethoxazole, and 55.5% were resistant to ampicillin and furazolidone. All \(S. \) _igella_ strains that simultaneously carried \(\text{bla}_{\text{TEM}} \) and \(\text{bla}_{\text{CTX-M}} \) were resistant to ampicillin, amikacin, tetracycline, nalidixic acid, furazolidone, cefalotin, doxycycline, trimethoprim-sulfamethoxazole, cefazolin, and ceftriaxone. Furthermore, only one strain harboring both \(\text{bla}_{\text{TEM}} \) and \(\text{bla}_{\text{CTX-M}} \) was resistant to ciprofloxacin (Table 2).

![Figure 2](image-url) \(S. \) _dysenteriae_ (Lane 1), \(S. \) _flexneri_ (Lane 2-4), \(S. \) _sonnei_ (Lane 5-7), \(S. \) _boydii_ (Lane 8-10), and \(K. \) _pneumoniae_ (Lane 11).

![Figure 3](image-url) Bar chart showing the frequency of \(\text{bla}_{\text{TEM}}, \text{bla}_{\text{CTX-M}}, \text{bla}_{\text{SHV}} \) genes in \(S. \) _igella_ isolates.
Table 2- Multidrug resistance profile of Shigella isolates (n=35) based on the distribution of bla genes

<table>
<thead>
<tr>
<th>Antimicrobial resistance profiles</th>
<th>Total (n=34)</th>
<th>S. sonnei (n=15)</th>
<th>S. dysenteriae (n=10)</th>
<th>S. flexneri (n=8)</th>
<th>S. boydii (n=1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AK/T/KF</td>
<td>1 (2.9)</td>
<td>1 (6.7)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AK/T/FZ/KF</td>
<td>1 (2.9)</td>
<td>1 (6.7)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AK/T/KF/TS/CZ</td>
<td>3 (8.8)</td>
<td>0</td>
<td>1 (10)</td>
<td>2 (25)</td>
<td>0</td>
</tr>
<tr>
<td>AP/AK/T/KF/CZ</td>
<td>1 (2.9)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AK/T/FZ/KF/TS</td>
<td>2 (5.9)</td>
<td>2 (13.3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AP/AK/T/NA/KF</td>
<td>1 (2.9)</td>
<td>1 (6.7)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FZ/KF/DX/TS/CZ</td>
<td>1 (2.9)</td>
<td>1 (6.7)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AK/T/KF/CZ/CRO</td>
<td>1 (2.9)</td>
<td>1 (6.7)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FZ/KF/DX/CZ/CRO</td>
<td>1 (2.9)</td>
<td>1 (6.7)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AP/AK/T/FZ/KF/CZ</td>
<td>1 (2.9)</td>
<td>1 (6.7)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AP/AK/T/KF/TS/CZ</td>
<td>1 (2.9)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AK/T/FK/TS/CZ</td>
<td>1 (2.9)</td>
<td>0</td>
<td>1 (12.5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AK/T/KF/DX/TS/CZ</td>
<td>1 (2.9)</td>
<td>0</td>
<td>1 (12.5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AP/AK/T/FZ/KF/TS/CZ</td>
<td>4 (11.8)</td>
<td>2 (13.3)</td>
<td>1 (10)</td>
<td>1 (12.5)</td>
<td>0</td>
</tr>
<tr>
<td>AP/AK/T/FZ/KF/DX/TS/CZ</td>
<td>2 (5.9)</td>
<td>0</td>
<td>2 (20)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AP/AK/T/NA/FZ/KF/TS/CZ</td>
<td>1 (2.9)</td>
<td>0</td>
<td>1 (10)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AP/AK/T/NA/FZ/KF/TS/CZ/CRO</td>
<td>1 (2.9)</td>
<td>1 (6.7)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AP/AK/T/NA/FZ/KF/DX/TS/CZ/CRO</td>
<td>1 (2.9)</td>
<td>0</td>
<td>1 (10)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AP/AK/T/NA/FZ/KF/DX/TS/CZ/GM/CRO</td>
<td>2 (5.9)</td>
<td>0</td>
<td>0</td>
<td>2 (25)</td>
<td>0</td>
</tr>
<tr>
<td>AP/AK/T/NA/FZ/KF/DX/TS/CZ/CRO/CZA</td>
<td>1 (2.9)</td>
<td>1 (6.7)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AP/AK/T/NA/FZ/KF/DX/TS/GM/CRO</td>
<td>1 (2.9)</td>
<td>0</td>
<td>1 (10)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AP/AK/T/NA/FZ/KF/DX/TS/CZ/GM/CRO/CZA</td>
<td>1 (2.9)</td>
<td>1 (6.7)</td>
<td>0</td>
<td>0</td>
<td>1 (100)</td>
</tr>
<tr>
<td>AP/AK/T/NA/CP/FZ/KF/DX/TS/CZ/GM/CRO/CZA</td>
<td>1 (2.9)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>AP/AK/T/NA/CIP/FZ/KF/DX/TS/CZ/GM/ CRO/ CZA</td>
<td>2 (5.9)</td>
<td>2 (13.3)</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

DISCUSSION

Shigellosis is a major cause of morbidity and mortality among children in the developing countries (21). MDR Shigella isolates narrow the choice of effective antimicrobials and treatment options for shigellosis (22). Besides, with the advent of ESBL-producing Shigella strains, 3GC is no longer effective against MDR Shigella. Hence, knowledge about the contribution of the MDR strains to infectivity in hospitalized patients and continuous monitoring of the involved genes in different regions can be beneficial for development and implementation of preventive and control measures.

S. sonnei and S. flexneri are the most commonly isolated species in industrialized (23) and developing countries (24), respectively. In our study, S. sonnei was the most common cause of shigellosis, which is consistent with findings of other studies in Iran (25-27). Reasons behind the dominance of S. sonnei in industrialized countries remain unclear (28), but an increasing incidence of shigellosis caused by S. sonnei generally correlates with improving economic prosperity (29).

In our study, most Shigella isolates were resistant and intermediately resistant to trimethoprim-sulfamethoxazole and ampicillin, the first-line drugs suggested by the CLSI for shigellosis (30). These results are in line with the results of other studies (31, 32). Quinolones are a good choice for the treatment of shigellosis (30). However, more than 34% of Shigella isolates in our study were resistant and intermediately resistant to nalidixic acid. In a study by Ghavam et al. in Iran, a similar frequency for resistance to nalidixic acid was observed (26), but in some countries higher resistance rates have been reported (7, 31). Multi-drug resistance to the antimicrobial agents used for the treatment of shigellosis has been reported in many parts of the world (31, 33, 34). The results of our study suggest that multidrug resistance is common amongst all Shigella species, and this property was more notable in the case of S. dysenteriae. Inappropriate prescription and the easy access to antibiotics among outpatients could facilitate the spread of MDR Shigella strains in the community (34).

In the case of infections caused by MDR strains, 3GC and fluoroquinolones are used for treatment of children and adults, respectively (35). We detected very little resistance to ciprofloxacin (1.92%), which is comparable with the results of other studies in Iran (12, 27, 36). However, a higher prevalence for ciprofloxacin-resistant Shigella isolates has been documented in other countries (31, 33, 34). In our study, the rate of resistance to ceftriaxone was 19.23%, which is higher than the rates reported by studies in Iran (11, 27, 37) and other countries (31, 38). However, even higher prevalence rates for ceftriaxone resistance among Shigella isolates has been reported in China (39). We also observed simultaneous resistance to ciprofloxacin and ceftriaxone, which further limits therapeutic options.

In a study by Pourakbari and colleagues, S. sonnei was more sensitive to cephalosporines (ceftizoxime, ceftriaxone, ceftazidime, and cephalothin) than S. flexneri, and S. flexneri was more sensitive to nalidixic acid than S. sonnei (40). Contrary to these findings, we found no significant difference in antibiotic susceptibility among S. sonnei and S. flexneri isolates.

In recent years, a high frequency of TEM gene has been identified in Shigella and other Enterobacteriaceae (22). This is of great clinical importance because the gene confers resistance to ampicillin, which was the principal antibiotic used for treatment of shigellosis (41). In our study, the blaTEM gene was detected in 61.5% of the Shigella isolates and in all MDR strains. Ampicillin resistance was found to be significantly associated with TEM β-lactamase genes in all isolates, which is in agreement with the results of other studies (10, 42). Ampicillin resistance in S. flexneri and S. sonnei is mainly due to the presence of blaOXA and blaTEM, respectively (42). Likewise, we found a significant correlation between ampicillin resistance and presence of blaTEM in S. sonnei isolates. However, no significant relationship was found between resistance to ampicillin and presence of blaTEM in S. flexneri isolates.

In the present study, the frequency of blaCTXM was relatively high among Shigella isolates. Zahedi Bialvaei et al. reported an even higher frequency for the blaCTXM gene (12). Among the Shigella isolates, blaCTXM was more frequently found in S. sonnei (21.74%), which is higher (33, 43) and in one case lower (23).
CONCLUSION

We revealed the high prevalence of blaTEM and blaCTX-M in Shigella strains isolated from patients in Iran. Antimicrobial susceptibility testing also demonstrated the high level of multi-drug resistance among these isolates. These findings raise serious concerns about the dissemination of ESBL-producing Shigella strains, and emphasize the need for controlled use of antibiotics, especially 3GC, to avoid further antibiotic resistance.

ACKNOWLEDGEMENTS

This article has been derived from an MSc thesis, funded by the Islamic Azad University, Islamshahr Branch, Iran.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

REFERENCES

