Volume 13, Issue 2 (Mar-Apr 2019)                   mljgoums 2019, 13(2): 8-15 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Beladi Ghannadi S, Ghane M, Babaeekhou L. Determination of Antibiotic Resistance Pattern and frequency of CTX-M, TEM, and SHV Β-Lactamase Encoding Genes among Shigella Isolates from Inpatients in Tehran, Iran. mljgoums. 2019; 13 (2) :8-15
URL: http://mlj.goums.ac.ir/article-1-1169-en.html
1- Department of Biology, Faculty of Science, Islamic Azad University Islamshahr Branch, Islamshahr, Iran
Abstract:   (2351 Views)
             Background and Objectives: The emergence of extended-spectrum β-lactamase (ESBL)-producing Shigella spp. is becoming a health concern worldwide. This study aimed to investigate antibiotic resistance pattern and frequency of blaCTX-M, blaSHV, and blaTEM genes among Shigella isolates from patients in hospitals of Tehran, Iran.
             Methods: In this cross-sectional study, 52 non-repeated Shigella strains were isolated from hospitalized patients in Milad, Emam Khomeini and Shariati hospitals in Tehran (Iran) from November 2015 to December 2016. Bacterial identification, serotyping, and antimicrobial susceptibility testing were performed according to the standard guidelines. The blaCTX-M, blaSHV, and blaTEM resistance genes were identified using multiplex polymerase chain reaction.
             Results: Among 52 Shigella isolates, S. sonnei (44.2%) was the predominant species, followed by S. flexneri and S. dysenteriae (23%). Over 67% of the isolates were multidrug resistant. The highest rates of resistance were observed against cefalotin (67.3%), tetracycline (67.3%), amikacin (63.5%), trimethoprim-sulphamethoxazole (48.1), and ampi­cillin (42.3%). The lowest resistance rate was against ciprofloxacin (1.9%). We detected the blaTEM and blaCTX-M genes in 61.5% and 19.2% of the isolates, respectively. However, the blaSHV gene was not detected in any of the isolates. In addition, 16.4% of the isolates harbored the blaTEM and blaCTX-M genes simultaneously. Ciprofloxacin was the most effective antibiotics according to the ESBL genes distribution.
             Conclusion: Our findings indicate the high prevalence of multidrug resistance and ESBL genes in Shigella isolates, which elucidates the need for appropriate infection control measures for limiting the spread of resistant strains.
             Keywords: Shigella, Multiplex Polymerase Chain Reaction, Drug Resistance.
Full-Text [PDF 627 kb]   (343 Downloads)    
Type of Study: Original Paper | Subject: Biochemistry
Received: 2019/01/2 | Accepted: 2019/01/2 | Published: 2019/01/2 | ePublished: 2019/01/2

1. Tai AY, Easton M, Encena J, Rotty J, Valcanis M, Howden BP, et al. A review of the public health management of shigellosis in Australia in the era of culture independent diagnostic testing. Aust N Z J Public Health. 2016; 40: 588-91. [DOI:10.1111/1753-6405.12590]
2. Kim JS, Kim JJ, Kim SJ, Jeon SE, Seo KY, Choi JK, et al. Outbreak of Ciprofloxacin-Resistant Shigella sonnei Associated with Travel to Vietnam, Republic of Korea. Emerg Infect Dis. 2015; 21(7): 1247-50. [DOI:10.3201/eid2107.150363]
3. Kozyreva VK, Jospin G, Greninger AL, Watt JP, Eisen JA, Chaturvedi V. Recent Outbreaks of Shigellosis in California caused by two distinct populations of Shigella sonnei with either increased virulence or fluoroquinolone resistance. mSphere. 2016; 21;1(6). doi: 10.1128/mSphere.00344-16. [DOI:10.1128/mSphere.00344-16]
4. Livio S, Strockbine NA, Panchalingam S, Tennant SM, Barry EM, Marohn ME, et al. Shigella isolates from the global enteric multicenter study inform vaccine development. Clin Infect Dis. 2014; 59 (7): 933–41. [DOI:10.1093/cid/ciu468]
5. World Health Organization. Guidelines for the Control of. Shigellosis, including epidemics due to Shigella dysenteriae type 1. Geneva: WHO; 2005.
6. Qiu S, Xu X, Wang Y, Yang G, Wang Z, Wang H, et al. Emergence of resistance to fluoroquinolones and third-generation cephalosporins in Shigella flexneri subserotype 1c isolates from China. Clin Microbiol Infect. 2012 ;18 (4): E95-8. doi: 10.1111/j.1469-0691.2012.03768.x. [DOI:10.1111/j.1469-0691.2012.03768.x]
7. Zhang R, Zhou HW, Cai JC, Zhang J, Chen GX, Nasu M, et al. Serotypes and extended-spectrum β-lactamase types of clinical isolates of Shigella spp. from the Zhejiang province of China. Diagn Microbiol Infect Dis. 2011; 69: 98-104. [DOI:10.1016/j.diagmicrobio.2010.08.027]
8. Sabra AH, Araj GF, Kattar MM, Abi-Rached RY, Khairallah MT, Klena JD, et al. Molecular characterization of ESBL-producing Shigella sonnei isolates from patients with bacilliary dysentery in Lebanon. J Infect Dev Ctries. 2009; 3(4): 300-05.
9. Manoharan A, Premalatha K, Chatterjee S, Mathai D. Correlation of TEM, SHV and CTX-M extended-spectrum beta lactamases among Enterobacteriaceae with their in vitro an‌timicrobial susceptibility. Indian J Med Microbiol. 2011; 29(2): 161–4. [DOI:10.4103/0255-0857.81799]
10. Taneja N, Mewara A, Kumar A, Verma G, Sharma M. Cephalosporin-resistant Shigella flexneri over 9 years (2001-09) in India. J Antimicrob Chemother. 2012; 67: 1347-53. [DOI:10.1093/jac/dks061]
11. Ranjbar R, Mirsaeed Ghazi F, Shohreh Farshad S, Giammanco GM, Aleo A, Owlia P, et al. The occurrence of extended-spectrum β-lactamase producing Shigella spp. in Tehran, Iran. Iran J Microbiol. 2013; 5 (2): 108-112.
12. Zahedi Bialvaei A, Pourlak T, Aghamali M, Asgharzadeh M, Gholizadeh P, Samadi Kafil H. The prevalence of CTX-M-15 extended spectrum β-lactamases among Salmonella spp. and Shigella spp. isolated from three Iraninan hospitals. Eur J Microbiol Immunol. 2017; 7(2): 133–7. [DOI:10.1556/1886.2017.00004]
13. Akhi MT, Bialvaei A, Ghotaslou R, Asgharzadeh M, Naghili B, Pirzadeh T, et al. Faecal carriage of ESBL and plasmidmediated AmpC β-lactamase genes in Klebsiella spp. and Shigella spp. isolated from inpatient and outpatient carriers in Tabriz, Iran. Int J Fund Appl Sci. 2016; 8: 16–29. [DOI:10.4314/jfas.v8i3s.162]
14. Barrow GI, Feltham RKA. Cowan and Steel's Manual for the Identification of Medical Bacteria. Cambridge University Press, 2005.
15. Lefebvre J, Gosselin F, Ismaïl J, Lorange M, Lior H, Woodward D. Evaluation of commercial antisera for Shigella serogrouping. J Clin Microbiol. 1995; 33(8): 1997-2001.
16. Wayne P. Performance standards for antimicrobial susceptibility testing. Clinical and Laboratory Standards Institute (CLSI) 27th informational supplement M100, 2017.
17. Monstain HJ, Ostholm- Balkhed A, Nilsson MV, Nilsson M, Dornbusch K, Nilsson LE. Multiplex amplification assay for detection of blaSHV, blaTEM and blaCTX-m genes in Enterobacteriaceae. APMIS. 2007; 115: 1400-8. [DOI:10.1111/j.1600-0463.2007.00722.x]
18. Paterson DL, Hujer KM, Hujer AM, Yeiser B, Bonomo MD, Rice LB, et al. Extendedspectrum b-lactamases in Klebsiella pneumonia bloodstream isolates from seven countries: dominance and widespread prevalence of SHV-and CTX-M-type b-lactamases. Antimicrob Agents Chemother. 2003; 47: 3553–60. [DOI:10.1128/AAC.47.11.3554-3560.2003]
19. Boyd DA, Tyler S, Christianson S, McGeer A, Muller MP, Willey BM, et al. Complete nucleotide sequence of a 92-kilobase plasmid harboring the CTX-M-15 extended-spectrum beta-lactamase involved in an outbreak in long-term-care facilities in Toronto, Canada. Antimicrob Agents Chemother. 2004; 48: 3758–64. [DOI:10.1128/AAC.48.10.3758-3764.2004]
20. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012; 18: 268–81. [DOI:10.1111/j.1469-0691.2011.03570.x]
21. Gupta S, Mishra B, Muralidharan S, Srinivasa H. Ceftriaxone resistant Shigella flexneri, an emerging problem. Ind J Med Sci. 2010; 64: 553-6.
22. Yang C, Li P, Zhang X, Ma Q, Cui X, Li H, et al. Molecular characterization and analysis of high-level multidrug-resistance of Shigella flexneri serotype 4s strains from China. Sci Rep. 2016; 6: 29124. doi: 10.1038/srep29124. [DOI:10.1038/srep29124]
23. Zhang CL, Liu QZ, Wang J, Chu X, Shen LM, Guo YY. Epidemic and virulence characteristic of Shigella spp. with extended-spectrum cephalosporin resistance in Xiaoshan District, Hangzhou, China. BMC Infect Dis. 2014; 14: 260. doi: 10.1186/1471-2334-14-260. [DOI:10.1186/1471-2334-14-260]
24. Sethuvel DPM, Rajupathi NKD, Anandan S, Veeraraghavan B. Update on: Shigella new serogroups/serotypes and their antimicrobial resistance. Lett Appl Microbiol 2016; 64: 8–18. [DOI:10.1111/lam.12690]
25. Alizadeh-Hesar M, Bakhshi B, Najar-Peerayeh S. Clonal dissemination of a single Shigella sonnei strain among Iranian children during fall 2012 in Tehran, I.R. Iran. Infect Genet Evol. 2015; 34: 260-6. [DOI:10.1016/j.meegid.2015.06.024]
26. Ghavam P, Monajemzadeh M, Haghi Ashtiani M T, Mamishi S, Nodeh Farahani N, Tanzifi P. Shigellosis and Changes of Antimicrobial Susceptibility During Six Years. Iran J Pediatr. 2017; 27(3): e5131. doi: 10.5812/ijp.5131. [DOI:10.5812/ijp.5131]
27. Tajbakhsh M, García Migura L, Rahbar M, Svendsen CA, Mohammadzadeh M, et al. Antimicrobial resistant Shigella infections from Iran: an overlooked problem? J Antimicrob Chemother.2012; 67(5): 1128–33. [DOI:10.1093/jac/dks023]
28. Keusch GT. Bacterial Infections of Humans. Brachman PS, Abrutyn E, editors Boston, MA: Springer US, 2009.
29. Ram P, Crump J, Gupta S, Miller M, Mintz E. Part II. Analysis of data gaps pertaining to Shigella infections in low and medium human development index countries, 1984–2005. Epidemiol Infect. 2008; 136: 577–603. [DOI:10.1017/S0950268807009351]
30. Wayne P. Performance standards for antimicrobial susceptibility testing. Clinical and Laboratory Standards Institute (CLSI) 16th informational supplement M100- S16, 2006.
31. Aggarwal P, Uppal B, Ghosh R, Krishna Prakash S, Chakravarti A, Jha AK, et al. Multi drug resistance and extended spectrum beta lactamases in clinical isolates of Shigella: A study from New Delhi, India. Travel Medicine and Infectious Disease. 2016; 14(4): 407-13. [DOI:10.1016/j.tmaid.2016.05.006]
32. Shiferaw B, Solghan S, Palmer A, Joyce K, Barzilay EJ, Krueger A, et al. Antimicrobial susceptibility patterns of Shigella isolates in foodborne diseases active surveillance network (FoodNet) sites, 2000-2010. Clin Infect Dis. 2012; 54(5): 458-63. [DOI:10.1093/cid/cis230]
33. Nüesch-Inderbinen M, Heini N, Zurfluh K, Althaus D, Hächler H, Stephan R. Shigella antimicrobial drug resistance mechanisms, 2004–2014. Emerg Infect Dis. 2016; 22(6): 1083–5. [DOI:10.3201/eid2206.152088]
34. Zhang W, Luo Y, Li J, Lin L, Ma Y, Hu C, et al. Wide dissemination of multidrug-resistant Shigella isolates in China. J Antimicrob Chemother. 2011; 66: 2527–35. [DOI:10.1093/jac/dkr341]
35. Acikgoz ZC, Eser OK, Kocagoz S. CTX-M-3 type beta-lactamase producing Shigella sonnei isolates from pediatric bacillary dysentery cases. Jpn J Infect Dis. 2008; 61: 135-7.
36. Nikfar R, Shamsizadeh A, Darbor M, Khaghani1 S, Moghaddam M. A Study of prevalence of Shigella species and antimicrobial resistance patterns in paediatric medical center in Ahvaz, Iran. Iran j microbial. 2017; 9(5): 277-82.
37. Khaghani S, Shamsizadeh A, Nikfar R, Hesami A. Shigella flexneri: a three-year antimicrobial resistance monitoring of isolates in a Children Hospital, Ahvaz, Iran. Iran j microbial. 2014; 6(4): 225-9.
38. Zaidi MB, Estrada-García T, Campos FD, Chim R, Arjona F, Leon M, et al. Incidence, clinical presentation, and antimicrobial resistance trends in Salmonella and Shigella infections from children in Yucatan, Mexico. Front Microbiol. 2013; 4: 288. doi: 10.3389/fmicb.2013.00288. [DOI:10.3389/fmicb.2013.00288]
39. Cui X, Yang C, Wang J, Liang B, Yi S, Li H, et al. Antimicrobial Resistance of Shigella flexneri Serotype 1b Isolates in China. PLOS ONE 2015; 10(6): e0129009. doi: 10.1371/journal.pone.0129009. [DOI:10.1371/journal.pone.0129009]
40. Pourakbari B, Mamishi S, Mashoori N, Mahboobi N, Ashtiani MH, Afsharpaiman S, et al. Frequency and antimicrobial susceptibility of Shigella species isolated in Children Medical Center Hospital, Tehran, Iran, 2001-2006. Braz J Infect Dis. 2010; 14(2): 153–7. [DOI:10.1016/S1413-8670(10)70029-5]
41. Klontz KC, Singh N. Treatment of drug-resistant Shigella infections. Expert Rev Anti Infect Ther. 2015; 13: 69–80. [DOI:10.1586/14787210.2015.983902]
42. Toro CS, Farfan M, Contreras I, Flores O, Navarro N, Mora GC, et al. Genetic analysis of antibiotic resistance determinants in multidrug-resistant Shigella strains isolated from Chilean children. Epidemiol Infect. 2005; 133: 81–6. [DOI:10.1017/S0950268804003048]
43. Kacmaz B, Unaldi O, Sultan N, Durmaz R. Drug resistance profiles and clonality of sporadic Shigella sonnei isolates in Ankara, Turkey. Braz J Microbiol. 2014; 45(3): 845-9. [DOI:10.1590/S1517-83822014000300013]
44. Shahin K, Bouzari M, Wang R. Isolation, characterization and genomic analysis of a novel lytic bacteriophage vB_SsoS-ISF002 infecting Shigella sonnei and Shigella flexneri. J Med Microbiol. 2018; 67(3): 376-386. [DOI:10.1099/jmm.0.000683]

Add your comments about this article : Your username or Email:

© 2007 All Rights Reserved | Medical Laboratory Journal