Volume 12, Issue 5 (Sep-Oct 2018)                   mljgoums 2018, 12(5): 50-56 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Alavizadeh N S, Rashidlamir A, Hejazi S M. Effect of Eight Weeks Aerobic and Combined Training on Serum Levels of Sirtuin 1 and PGC-1α in Coronary Artery Bypass Graft Patients. mljgoums. 2018; 12 (5) :50-56
URL: http://mlj.goums.ac.ir/article-1-1119-en.html
1- Student of Sports Physiology, Islamic Azad University of Neyshabour, Neyshabour, Iran
2- Department of Sports Physiology, Faculty of Sports Sciences, Ferdowsi University of Mashhad, Mashhad, Iran , rashidlamir@um.ac.ir
3- Department of Sports Physiology, Faculty of Sports Sciences, Islamic Azad University of Mashhad, Mashhad, Iran
Abstract:   (9182 Views)
           Background and objectives:  Sirtuin-1 (SIRT1) is a conserved a NAD+-dependent protein deacetylase essential for cellular metabolism and defence against oxidative stress and endothelial dysfunction. This study aimed to compare effects of 8 weeks of aerobic and combined training on serum level of SIRT1 and PGC1-α in coronary artery bypass graft patients.
           Methods: In this semi-experimental study, 45 non-active men (mean age 47.4 ± 3.3 years) who had undergone coronary artery bypass graft surgery were randomly divided into three groups: aerobic training, combined resistance and aerobic training and control. Trainings were performed at 80% of maximum heart rate, three sessions a week for 8 weeks. Blood samples were collected 24 hours before the first exercise session and 48 hours after the last training session. T-test and one-way analysis of variance were used for assessment of within-group and between-group differences, respectively. P-values less than 0.05 were considered as statistically significant.
           Results: The 8-week aerobic and combined training increased serum levels of SIRT1 and PGC-1α compared with the control group, and significantly decreased the weight of subjects (p=0.001). There was no significant difference in serum levels of SIRT1 and PGC-1α between the two training groups (P≥0.05).
           Conclusion: Both combined and aerobic training significantly improve the SIRT1 and PGC-1α levels in coronary artery bypass graft patients.
           KEYWORDS: Combined training, Aerobic training, PGC-1α, SIRT1, CABG patient.
Full-Text [PDF 635 kb]   (962 Downloads)    
Type of Study: Original Paper |
Received: 2018/08/27 | Accepted: 2018/08/27 | Published: 2018/08/27 | ePublished: 2018/08/27

1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29-e322. https://doi.org/10.1161/CIR.0000000000000152 [DOI:10.1161/CIR.0000000000000152.]
2. Schutzer KA, Graves BS. Barriers and motivations to exercise in older adults. Preventive medicine. 2004; 39(5): 1056-61. [DOI:10.1016/j.ypmed.2004.04.003]
3. Ismail H, McFarlane JR, Nojoumian AH, Dieberg G, Smart NA. Clinical outcomes and cardiovascular responses to different exercise training intensities in patients with heart failure: a systematic review and meta-analysis. JACC Heart Failure. 2013; 1(6): 514-22. https://doi.org/10.1016/j.jchf.2013.08.006 [DOI:10.1016/j.jchf.2013.08.006.]
4. Meyer P, Gayda M, Juneau M, Nigam A. High-intensity aerobic interval exercise in chronic heart failure. Current heart failure reports. 2013; 10(2): 130-8. https://doi.org/10.1007/s11897-013-0130-3 [DOI:10.1007/s11897-013-0130-3.]
5. Gan L. Therapeutic potential of sirtuin-activating compounds in Alzheimer's disease. Drug News Perspect. 2007; 20(4): 233-9. https://doi.org/10.1358/dnp.2007.20.4.1101162 [DOI:10.1358/dnp.2007.20.4.1101162.]
6. Palacios OM, Carmona JJ, Michan S, Chen KY, Manabe Y, Ward Iii JL, et al. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1α in skeletal muscle. Aging (Albany NY). 2009;1(9):771-83. https://doi.org/10.18632/aging.100075 [DOI:10.18632/aging.100075.]
7. Haigis MC, Guarente LP. Mammalian sirtuins-emerging roles in physiology, aging, and calorie restriction. Genes & development. 2006; 20(21): 2913-21. [DOI:10.1101/gad.1467506]
8. Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function. Biochemical Journal. 2007; 404(1): 1-13. https://doi.org/10.1042/BJ20070140 [DOI:10.1042/BJ20070140.]
9. Guarente L, Picard F. Calorie restriction-the SIR2 connection. Cell. 2005; 120(4): 473-82. . Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Molecular biology of the cell. 2005; 16(10): 4623-35. https://doi.org/10.1091/mbc.e05-01-0033. https://doi.org/10.1091/mbc.e05-01-0033 [DOI:10.1016/j.cell.2005.01.029]
10. Cooper HM, Spelbrink JN. The human SIRT3 protein deacetylase is exclusively mitochondrial. Biochemical Journal. 2008; 411(2): 279-85. https://doi.org/10.1042/BJ20071624 [DOI:10.1042/BJ20071624.]
11. Potente M, Dimmeler S. Emerging roles of SIRT1 in vascular endothelial homeostasis. Cell cycle. 2008; 7(14): 2117-22. https://doi.org/10.4161/cc.7.14.6267 [DOI:10.4161/cc.7.14.6267.]
12. Satoh A, Stein L, Imai S. The role of mammalian sirtuins in the regulation of metabolism, aging, and longevity. Histone Deacetylases: the Biology and Clinical Implication: Springer. 2011; 125-62.
13. Tanno M, Kuno A, Horio Y, Miura T. Emerging beneficial roles of sirtuins in heart failure. Basic research in cardiology. 2012; 107(4): 273. https://doi.org/10.1007/s00395-012-0273-5 [DOI:10.1007/s00395-012-0273-5.]
14. Corbi G, Conti V, Russomanno G, Longobardi G, Furgi G, Filippelli A, et al. Adrenergic signaling and oxidative stress: a role for sirtuins? Front physiol. 2013; 4: 324. https://doi.org/10.3389/fphys.2013.00324 [DOI:10.3389/fphys.2013.00324.]
15. Conti V, Corbi G, Simeon V, Russomanno G, Manzo V, Ferrara N, et al. Aging-related changes in oxidative stress response of human endothelial cells. Aging clinical and experimental research. 2015; 27(4): 547-53. https://doi.org/10.1007/s40520-015-0357-9 [DOI:10.1007/s40520-015-0357-9.]
16. Cui Y, Wang H, Chen H, Pang S, Wang L, Liu D, et al. Genetic analysis of the SIRT1 gene promoter in myocardial infarction. Biochemical and biophysical research communications. 2012; 426(2): 232-6. https://doi.org/10.1016/j.bbrc.2012.08.071 [DOI:10.1016/j.bbrc.2012.08.071.]
17. Yang H, Yang T, Baur JA, Perez E, Matsui T, Carmona JJ, et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell. 2007; 130(6): 1095-107. https://doi.org/10.1016/j.cell.2007.07.035 [DOI:10.1016/j.cell.2007.07.035.]
18. White AT, Schenk S. NAD+/NADH and skeletal muscle mitochondrial adaptations to exercise. American Journal of Physiology-Endocrinology and Metabolism. 2012; 303(3): E308-E21. https://doi.org/10.1152/ajpendo.00054.2012 [DOI:10.1152/ajpendo.00054.2012.]
19. Lanza IR, Short DK, Short KR, Raghavakaimal S, Basu R, Joyner MJ, et al. Endurance exercise as a countermeasure for aging. Diabetes. 2008; 57(11): 2933-42. https://doi.org/10.2337/db08-0349 [DOI:10.2337/db08-0349.]
20. Gurd BJ, Holloway GP, Yoshida Y, Bonen A. In mammalian muscle, SIRT3 is present in mitochondria and not in the nucleus; and SIRT3 is upregulated by chronic muscle contraction in an adenosine monophosphate-activated protein kinase–independent manner. Metabolism. 2012; 61(5): 733-41. https://doi.org/10.1016/j.metabol.2011.09.016 [DOI:10.1016/j.metabol.2011.09.016.]
21. Lu T-M, Tsai J-Y, Chen Y-C, Huang C-Y, Hsu H-L, Weng C-F, et al. Downregulation of Sirt1 as aging change in advanced heart failure. Journal of biomedical science. 2014; 21(1): 57. https://doi.org/10.1186/1423-0127-21-57 [DOI:10.1186/1423-0127-21-57.]
22. Ferrara N, Rinaldi B, Corbi G, Conti V, Stiuso P, Boccuti S, et al. Exercise training promotes SIRT1 activity in aged rats. Rejuvenation research. 2008; 11(1): 139-50. https://doi.org/10.1089/rej.2007.0576 [DOI:10.1089/rej.2007.0576.]
23. Coffey VG, Hawley JA. The molecular bases of training adaptation. Sports medicine. 2007; 37(9): 737-63. https://doi.org/10.2165/00007256-200737090-00001 [DOI:10.2165/00007256-200737090-00001.]
24. Hokari F, Kawasaki E, Sakai A, Koshinaka K, Sakuma K, Kawanaka K. Muscle contractile activity regulates Sirt3 protein expression in rat skeletal muscles. Journal of applied physiology. 2010; 109(2): 332-40. https://doi.org/10.1152/japplphysiol.00335.2009 [DOI:10.1152/japplphysiol.00335.2009.]
25. Bua EA, McKiernan SH, Wanagat J, McKenzie D, Aiken JM. Mitochondrial abnormalities are more frequent in muscles undergoing sarcopenia. Journal of applied physiology. 2002; 92(6): 2617-24. https://doi.org/10.1152/japplphysiol.01102.2001 [DOI:10.1152/japplphysiol.01102.2001.]
26. Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell metabolism. 2013; 17(2): 162-84. https://doi.org/10.1016/j.cmet.2012.12.012 [DOI:10.1016/j.cmet.2012.12.012.]
27. Widrick JJ, Stelzer JE, Shoepe TC, Garner DP. Functional properties of human muscle fibers after short-term resistance exercise training. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2002; 283(2): R408-R16. https://doi.org/10.1152/ajpregu.00120.2002 [DOI:10.1152/ajpregu.00120.2002.]
28. Spina RJ, Chi M, Hopkins MG, Nemeth P, Lowry O, Holloszy J. Mitochondrial enzymes increase in muscle in response to 7-10 days of cycle exercise. Journal of applied physiology. 1996; 80(6): 2250-4. https://doi.org/10.1152/jappl.1996.80.6.2250 [DOI:10.1152/jappl.1996.80.6.2250.]
29. Green H, Helyar R, Ball-Burnett M, Kowalchuk N, Symon S, Farrance B. Metabolic adaptations to training precede changes in muscle mitochondrial capacity. Journal of Applied Physiology. 1992; 72(2): 484-91. https://doi.org/10.1152/jappl.1992.72.2.484 [DOI:10.1152/jappl.1992.72.2.484.]
30. Benziane B, Burton TJ, Scanlan B, Galuska D, Canny BJ, Chibalin AV, et al. Divergent cell signaling after short-term intensified endurance training in human skeletal muscle. American Journal of Physiology-Endocrinology and Metabolism. 2008; 295(6): E1427-E38. https://doi.org/10.1152/ajpendo.90428.2008 [DOI:10.1152/ajpendo.90428.2008.]
31. Pilegaard H, Saltin B, Neufer PD. Exercise induces transient transcriptional activation of the PGC‐1α gene in human skeletal muscle. The Journal of physiology. 2003; 546(3): 851-8. https://doi.org/10.1113/jphysiol.2002.034850 [DOI:10.1113/jphysiol.2002.034850.]
32. Gibala MJ, McGee SL, Garnham AP, Howlett KF, Snow RJ, Hargreaves M. Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1α in human skeletal muscle. Journal of applied physiology. 2009; 106(3): 929-34. https://doi.org/10.1152/japplphysiol.90880.2008 [DOI:10.1152/japplphysiol.90880.2008.]
33. Thompson W, Gordon N, Pescatello L. American College of Sport Medicine. ACSM's Guidelines for exercise testing and prescription. 8. painos. Philadelphia. Lippincott Williams and Wilkins; 2009.
34. Pollock ML, Franklin BA, Balady GJ, Chaitman BL, Fleg JL, Fletcher B, et al. Resistance exercise in individuals with and without cardiovascular disease. Circulation. 2000; 101(7): 828-33. https://doi.org/10.1161/01.CIR.101.7.828 [DOI:10.1161/01.CIR.101.7.828.]
35. Kincaid B, Bossy-Wetzel E. Forever young: SIRT3 a shield against mitochondrial meltdown, aging, and neurodegeneration. Frontiers in aging neuroscience. 2013; 5. [DOI:10.3389/fnagi.2013.00048]
36. Choo J, Burke LE, Hong KP. Improved quality of life with cardiac rehabilitation for post-myocardial infarction patients in Korea. European Journal of Cardiovascular Nursing. 2007; 6(3): 166-71. https://doi.org/10.1016/J.EJCNURSE.2006.07.004 [DOI:10.1016/J.EJCNURSE.2006.07.004.]
37. Siavoshi S, Roshandel M, Zareiyan A, Ettefagh L. The effect of cardiac rehabilitation care plan on the quality of life in patients undergoing coronary artery bypass graft surgery. Cardiovascular Nursing Journal. 2012; 1(2): 38-46.
38. Ma JK, Scribbans TD, Edgett BA, Boyd JC, Simpson CA, Little JP, et al. Extremely low-volume, high-intensity interval training improves exercise capacity and increases mitochondrial protein content in human skeletal muscle. Open Journal of Molecular and Integrative Physiology. 2013; 3(04): 202. https://doi.org/10.4236/ojmip.2013.34027 [DOI:10.4236/ojmip.2013.34027.]
39. Marton O, Koltai E, Takeda M, Koch LG, Britton SL, Davies KJ, et al. Mitochondrial biogenesis-associated factors underlie the magnitude of response to aerobic endurance training in rats. Pflügers Archiv-European Journal of Physiology. 2015; 467(4): 779-88. https://doi.org/10.1007/s00424-014-1554-7 [DOI:10.1007/s00424-014-1554-7.]
40. Minamino T, Komuro I. Vascular cell senescence. Circulation research. 2007; 100(1): 15-26. [DOI:10.1161/01.RES.0000256837.40544.4a]
41. https://doi.org/10.1161/01.RES.0000256837.40544.4a [DOI:10.1161/01.RES.0000256837.40544.4a.]
42. Ota H, Eto M, Kano MR, Kahyo T, Setou M, Ogawa S, et al. Induction of endothelial nitric oxide synthase, SIRT1, and catalase by statins inhibits endothelial senescence through the Akt pathway. Arteriosclerosis, thrombosis, and vascular biology. 2010; 30(11): 2205-11. https://doi.org/10.1161/ATVBAHA.110.210500 [DOI:10.1161/ATVBAHA.110.210500.]
43. Hou X, Xu S, Maitland-Toolan KA, Sato K, Jiang B, Ido Y, et al. SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. Journal of Biological Chemistry. 2008; 283(29): 20015-26. https://doi.org/10.1074/jbc.M802187200 [DOI:10.1074/jbc.M802187200.]
44. Chen D, Bruno J, Easlon E, Lin S-J, Cheng H-L, Alt FW, et al. Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev. 2008; 22(13): 1753-7. https://doi.org/10.1101/gad.1650608 [DOI:10.1101/gad.1650608.]
45. Little JP, Safdar A, Wilkin GP, Tarnopolsky MA, Gibala MJ. A practical model of low‐volume high‐intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms. The Journal of physiology. 2010; 588(6): 1011-22. https://doi.org/10.1113/jphysiol.2009.181743 [DOI:10.1113/jphysiol.2009.181743.]
46. Oliveira NR, Marques SO, Luciano TF, Pauli JR, Moura LP, Caperuto E, et al. Treadmill training increases SIRT-1 and PGC-1α protein levels and AMPK phosphorylation in quadriceps of middle-aged rats in an intensity-dependent manner. Mediators of inflammation. 2014; 2014.
47. Casuso RA, Martínez-Amat A, Hita-Contreras F, Camiletti-Moirón D, Aranda P, Martínez-López E. Quercetin supplementation does not enhance cerebellar mitochondrial biogenesis and oxidative status in exercised rats. Nutrition Research. 2015; 35(7): 585-91. [DOI:10.1016/j.nutres.2015.05.007]
48. Gurd BJ, Perry CG, Heigenhauser GJ, Spriet LL, Bonen A. High-intensity interval training increases SIRT1 activity in human skeletal muscle. Applied Physiology, Nutrition, and Metabolism. 2010; 35(3): 350-7. https://doi.org/10.1139/H10-030 [DOI:10.1139/H10-030.]

Add your comments about this article : Your username or Email:

Send email to the article author

© 2007 All Rights Reserved | Medical Laboratory Journal