Volume 13, Issue 5 (Sep-Oct 2019)                   mljgoums 2019, 13(5): 26-31 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kelishadi M, Hashemi P, Ashrafi G, Behnampour N, Tabarraei A. Presence of GB Virus C in Whole-Blood Derivatives: A Pilot Study. mljgoums 2019; 13 (5) :26-31
URL: http://mlj.goums.ac.ir/article-1-1106-en.html
1- Laboratory Sciences Research Center, Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
2- Infectious Diseases Research Center, Department of Microbiology، Golestan University of Medical Sciences, Gorgan, Iran
3- Kingston University London, Cancer Theme, School of Life Science, Pharmacy and Chemistry, SEC Faculty, Kingston upon Thames, KT12EE, London, UK
4- Department of Statistic, Paramedical School, Golestan University of Medical Sciences, Gorgan, Iran
5- Infectious diseases research centre, Department of microbiology, Golestan University of , alijant@yahoo.com
Abstract:   (3851 Views)
ABSTRACT
              Background and Objectives: Red blood cell (RBC) transfusion is necessary for the prevention and treatment of a variety of life-threatening injuries and diseases. However, viral contamination of these products is a great threat to recipients. Screening donors for GB virus C by nucleic acid testing is not routinely implemented worldwide. The aim of the present study was to evaluate prevalence of GBV-C RNA in whole blood/red cell components.
              Methods: In this cross sectional pilot study, we collected 153 units of packed RBCs from blood banks of two public hospitals in Gorgan (northeast of Iran), between October and November 2014. The samples were screened for the presence of GBV-C RNA in plasma by nested RT-PCR using specific primers targeting highly conserved regions of 5' UTR of GBV-C. Data were analyzed using SPSS software (version 18).
              Results: Overall, 48 (31.37%) whole blood or red cell components were positive for GBV-C viremia. The GBV-C RNA was detected in 31/88 citrate phosphate dextrose-adenine 1 (CPDA1) RBC, 16/50 washed RBC and 1/13 reduced-leukocyte RBC. However, whole blood CPDA1 was negative for GBV-C viremia. Direct sequencing of PCR products confirmed GBV-C contamination.
              Conclusions: Transmission of GBV-C infection was observed in blood products. Thus, efforts should be made to develop new strategies for assuring blood transfusion safety.
              Keywords: Molecular testing, Epidemiology, Transfusion-transmissible infections, GB Virus C.
Full-Text [PDF 724 kb]   (682 Downloads)    
Subject: Microbiology
Received: 2018/07/17 | Accepted: 2019/06/1 | Published: 2019/09/2 | ePublished: 2019/09/2

References
1. Bhattarai N, Stapleton JT (2012) GB virus C: the good boy virus?. Trends in microbiology 20(3):124-30 [DOI:10.1016/j.tim.2012.01.004]
2. Cheung RC, Keeffe E, Greenberg H (1997) Hepatitis G virus: is it a hepatitis virus?. Western journal of medicine 167(1):23
3. Halasz R, Barkholt L, Lara C, et al (1999) Relation between GB virus C/hepatitis G virus and fulminant hepatic failure may be secondary to treatment with contaminated blood and/or blood products. Gut 44(2):274-8 [DOI:10.1136/gut.44.2.274]
4. Fallahian F, Alavian S, Rasoulinejad M (2010) Epidemiology and transmission of hepatitis G virus infection in dialysis patients. Saudi Journal of Kidney Diseases and Transplantation 21(5):831
5. Kew M (2013) Hepatitis viruses (other than hepatitis B and C viruses) as causes of hepatocellular carcinoma: an update. Journal of viral hepatitis 20(3):149-57 [DOI:10.1111/jvh.12043]
6. Kelishadi M, Mojerloo M, Moradi A, et al (2014) GB virus C Viremia and Anti-E2 Antibody Response Among Hemodialysis Patients in Gorgan, Iran. Jundishapur Journal of Microbiology 7(11) [DOI:10.5812/jjm.13122]
7. Ranjbar MM, Ghorban K, Alavian SM, et al (2013) GB Virus C/Hepatitis G Virus Envelope Glycoprotein E2: Computational Molecular Features and Immunoinformatics Study. Hepatitis monthly 13(12) [DOI:10.5812/hepatmon.15342]
8. Kriesel JD, Hobbs MR, Jones BB, et al (2012) Deep sequencing for the detection of virus-like sequences in the brains of patients with multiple sclerosis: detection of GBV-C in human brain. PLoS One 7(3):e31886 [DOI:10.1371/journal.pone.0031886]
9. Arroyave JC, Pujol FH, Navas MC, et al (2013) [Interaction between HIV-1 and GB virus type-C during coinfection status]. Revista chilena de infectologia: organo oficial de la Sociedad Chilena de Infectologia 30(1):31-41 [DOI:10.4067/S0716-10182013000100005]
10. Blanc P, Boumrazne R, Sarzier J, et al (2009) [Extrahepatic symptoms in the course of GBV-C/HGV infection]. Medecine et maladies infectieuses 39(4):264-6 [DOI:10.1016/j.medmal.2008.09.030]
11. Khodavandi A, Yaghobi R, Alizadeh F, et al (2011) Evaluation of GB virus C (GBV-C)/hepatitis G virus (HGV) and hepatitis type B viruses (HBV) infections in patients with non-Hodgkin's lymphoma. African Journal of Microbiology Research 5(24):4143-9 [DOI:10.5897/AJMR11.417]
12. Ahmed QMU (2011) Hepatitis G virus (HGV): where we stand and what to do? International Journal of Immunological Studies 1(3):255-63 [DOI:10.1504/IJIS.2011.041723]
13. Naito H, Win KM, Abe K (1999) Identification of a novel genotype of hepatitis G virus in Southeast Asia. Journal of clinical microbiology 37(4):1217-20
14. Kelishadi M, Moradi A, Samadi S, et al (2015) Transfusion-Transmitted Cytomegalovirus Infection (TT-CMV): A Pilot Study on Safety of Whole-Blood Derivatives. Scimetr July; 3(3): e25718. [DOI:10.5812/scimetr.25718]
15. Ghanbari R, Ravanshad M, Hosseini SY, et al (2010) Genotyping and infection rate of GBV-C among Iranian HCV-infected patients. Hepatitis monthly 10(2):80
16. Organization WH (2004) Guidelines on viral inactivation and removal procedures intended to assure the viral safety of human blood plasma products. WHO Technical Report, Series (924).
17. Gajewski JL, Johnson VV, Sandler SG, et al (2008) A review of transfusion practice before, during, and after hematopoietic progenitor cell transplantation. Blood. 112(8):3036-47 [DOI:10.1182/blood-2007-10-118372]
18. Soucie JM, De Staercke C, Monahan PE, et al (2013) Evidence for the transmission of parvovirus B19 in patients with bleeding disorders treated with plasma‐derived factor concentrates in the era of nucleic acid test screening. Transfusion 53(6):1217-25 [DOI:10.1111/j.1537-2995.2012.03907.x]
19. Lefrère JJ, Laperche S, Roudot‐Thoraval F (2008) Hepatitis G virus: a suitable marker of in vivo efficacy for pathogen inactivation. Vox sanguinis 95(1):76-8 [DOI:10.1111/j.1423-0410.2008.01050.x]
20. Alonso‐Rubiano E, Gerber M, Friedman P, et al (2003) Hepatitis G virus in clotting factor concentrates. Haemophilia 9(1):110-5 [DOI:10.1046/j.1365-2516.2003.00706.x]
21. Woelfle J, Berg T, Bialek R, et al (1999) GB virus C/hepatitis G virus infection in HIV infected patients with haemophilia despite treatment with virus inactivated clotting factor concentrates. Archives of disease in childhood 80(5):429-32 [DOI:10.1136/adc.80.5.429]
22. Hofer H, Aydin I, Neumueller‐Guber S, et al (2011) Prevalence and clinical significance of GB virus type C/hepatitis G virus coinfection in patients with chronic hepatitis C undergoing antiviral therapy. Journal of viral hepatitis 18(7):513-7 [DOI:10.1111/j.1365-2893.2010.01340.x]
23. Steinmann E, Gravemann U, Friesland M, et al (2013) Two pathogen reduction technologies-methylene blue plus light and shortwave ultraviolet light-effectively inactivate hepatitis C virus in blood products. Transfusion. 53(5):1010-8 [DOI:10.1111/j.1537-2995.2012.03858.x]
24. Kang X, Qin C, Li Y, et al (2011) Improvement of the specificity of a pan‐viral microarray by using genus‐specific oligonucleotides and reduction of interference by host genomes. Journal of medical virology 83(9):1624-30 [DOI:10.1002/jmv.22157]
25. Liu Y, Sam L, Li J, et al (2009). Robust methods for accurate diagnosis using pan-microbiological oligonucleotide microarrays. BMC bioinformatics 10(Suppl 2):S11 [DOI:10.1186/1471-2105-10-S2-S11]
26. Ebihara Y, Ma F, Tsuji K (2012) Generation of red blood cells from human embryonic/induced pluripotent stem cells for blood transfusion. International journal of hematology 95(6):610-6. [DOI:10.1007/s12185-012-1107-9]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2007 All Rights Reserved | Medical Laboratory Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.