Volume 12, Issue 3 (May-Jun 2018)                   mljgoums 2018, 12(3): 41-45 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bokaeian M, Shahraki Zahedani S, Delarampoor A, Atashgah M, Dahmarde B. Evaluation of Antibiotic Resistance Patterns of Clinical Klebsiella pneumoniae Isolates from Educational Hospitals in Zahedan, Iran. mljgoums. 2018; 12 (3) :41-45
URL: http://goums.ac.ir/mljgoums/article-1-1075-en.html
1- Infectious Diseases and Tropical Medicine Research Center, Resistant Tuberculosis Institute, Department of Microbiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran, Infectious Diseases and Tropical Medicine Research Center, Resistant Tuberculosis Institute, Department of Microbiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
2- Department of Microbiology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran, Department of Microbiology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran , abbasalidelarami@gmail.com
3- Department of Microbiology, Faculty of Medicine, Zahedan University of Medical Science, Zahedan, Iran, Department of Microbiology, Faculty of Medicine, Zahedan University of Medical Science, Zahedan, Iran
Abstract:   (1640 Views)
ABSTRACT
Background and Objectives: The resistance of gram-negative bacteria to antibiotics has become a serious problem, which imposes a significant increase in treatment costs. Klebsiella pneumoniae is an important nosocomial pathogen from the Enterobacteriaceae family. The aim of this study was to investigate the frequency and pattern of antibiotic resistance in K. pneumoniae strains isolated from clinical samples.
Methods: This descriptive, cross-sectional study was performed on 150 K. pneumonia strains isolated from different clinical samples such as urine, sputum, blood, ulcers, lung secretions and abdominal abscess. Antibiogram test was performed using the disk diffusion method (Kirby-Bauer). Minimum inhibitory concentration of amikacin, tobramycin and gentamicin was determined via the E-test for 50 strains with high resistance rates.
Results: In this study, the highest rate of resistance was observed against carbenicilin, ceftriaxone, cefepime and streptomycin. K. pneumonia isolates were most frequent in urine and sputum samples. In the E-test, the highest rate of resistance was observed against gentamicin, tobramycin (16µg/ml) and amikacin (64µg/ml).
Conclusion: Based on our results, tigecycline, netilmicin, kanamycin and amikacin are the most effective antibiotics for the treatment of K. pneumoniae infections.
Keywords: Klebsiella pneumoniae, antimicrobial resistance, E-test method
Full-Text [PDF 662 kb]   (311 Downloads)    
Type of Study: Original Paper | Subject: Special
Received: 2018/04/30 | Accepted: 2018/04/30 | Published: 2018/04/30

References
1. Maneesakorn P, An R, Daneshvar H, Taylor K, Bai X, Adams BJ, et al. Phylogenetic and cophylogenetic relationships of entomopathogenic nematodes (Heterorhabditis: Rhabditida) and their symbiotic bacteria (Photorhabdus: Enterobacteriaceae). Molecular phylogenetics and evolution. 2011; 59(2): 271-80. [DOI:10.1016/j.ympev.2011.02.012]
2. Slama TG. Gram-negative antibiotic resistance: there is a price to pay. Critical Care. 2008; 12(4): S4. doi: 10.1186/cc6820. [DOI:10.1186/cc6820]
3. Brisse S, Fevre C, Passet V, Issenhuth-Jeanjean S, Tournebize R, Diancourt L, et al. Virulent clones of Klebsiella pneumoniae: identification and evolutionary scenario based on genomic and phenotypic characterization. PloS one. 2009; 4(3): e4982. doi: 10.1371/journal.pone.0004982. [DOI:10.1371/journal.pone.0004982]
4. Holt KE, Wertheim H, Zadoks RN, Baker S, Whitehouse CA, Dance D, et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proceedings of the National Academy of Sciences. 2015; 112(27): E3574-E81. [DOI:10.1073/pnas.1501049112]
5. Lin J-C, Chang F-Y, Fung C-P, Xu J-Z, Cheng H-P, Wang J-J, et al. High prevalence of phagocytic-resistant capsular serotypes of Klebsiella pneumoniae in liver abscess. Microbes and infection. 2004; 6(13): 1191-8. [DOI:10.1016/j.micinf.2004.06.003]
6. Alcantar-Curiel D, Tinoco JC, Gayosso C, Carlos A, Daza C, Perez-Prado MC, et al. Nosocomial bacteremia and urinary tract infections caused by extended-spectrum β-lactamase-producing Klebsiella pneumoniae with plasmids carrying both SHV-5 and TLA-1 genes. Clinical infectious diseases. 2004; 38(8): 1067-74. [DOI:10.1086/382354]
7. Sanchez U, Bello T, Dominguez Y, Mella M, Zemelman Z, Gonzalez R. Transference of extended-spectrum beta-lactamases from nosocomial strains of Klebsiella pneumoniae to other species of Enterobacteriaceae. Revista medica de Chile. 2006; 134(4): 415-20.
8. Fernández A, Pereira MJ, Suárez JM, Poza M, Trevi-o M, Villalón P, et al. Emergence in Spain of a Multidrug Resistant Enterobacter cloacae clinical isolate producing SFO-1 extended-spectrum β-lactamase. Journal of clinical microbiology. 2011; 49(3): 822-8. doi: 10.1128/JCM.01872-10. [DOI:10.1128/JCM.01872-10]
9. Karbasizaed V, Badami N, Emtiazi G. Antimicrobial, heavy metal resistance and plasmid profile of coliforms isolated from nosocomial infections in a hospital in Isfahan, Iran. African Journal of Biotechnology. 2003; 2(10): 379-83. [DOI:10.5897/AJB2003.000-1078]
10. Rasheed J, Tenover F. Detection and characterization of antimicrobial resistance genes in bacteria. Manual of clinical microbiology. 2003; 1: 1196-212.
11. Bialek-Davenet S, Criscuolo A, Ailloud F, Passet V, Jones L, Delannoy-Vieillard A-S, et al. Genomic definition of hypervirulent and multidrug-resistant Klebsiella pneumoniae clonal groups. Emerging infectious diseases. 2014; 20(11):1812. [DOI:10.3201/eid2011.140206]
12. Pfaller M, Castanheira M, Diekema D, Messer S, Moet G, Jones R. Comparison of European Committee on Antimicrobial Susceptibility Testing (EUCAST) and Etest methods with the CLSI broth microdilution method for echinocandin susceptibility testing of Candida species. Journal of clinical microbiology. 2010; 48(5): 1592-9. [DOI:10.1128/JCM.02445-09]
13. Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature protocols. 2008;3(2): 163-75. doi: 10.1038/nprot.2007.521. [DOI:10.1038/nprot.2007.521]
14. Paterson DL, Bonomo RA. Extended-spectrum β-lactamases: a clinical update. Clinical microbiology reviews. 2005;18(4): 657-86. [DOI:10.1128/CMR.18.4.657-686.2005]
15. Kamatchi C, Magesh H, Sekhar U, Vaidyanathan R. Identification of clonal clusters of Klebsiella pneumoniae isolates from Chennai by extended spectrum beta lactamase genotyping and antibiotic resistance phenotyping analysis. Am J Infect Dis. 2009;5(2): 74-82. [DOI:10.3844/ajidsp.2009.74.82]
16. Wang A, Yang Y, Lu Q, Wang Y, Chen Y, Deng L, et al. Occurrence of qnr‐positive clinical isolates in Klebsiella pneumoniae producing ESBL or AmpC‐type β‐lactamase from five pediatric hospitals in China. FEMS microbiology letters. 2008; 283(1): 112-6. [DOI:10.1111/j.1574-6968.2008.01163.x]
17. Wang A, Yang Y, Lu Q, Wang Y, Chen Y, Deng L, et al. Presence of qnr gene in Escherichia coli and Klebsiella pneumoniae resistant to ciprofloxacin isolated from pediatric patients in China. BMC Infectious Diseases. 2008; 8(1): 68. doi: 10.1186/1471-2334-8-68. [DOI:10.1186/1471-2334-8-68]
18. JeanSS H. High burden of anti microbial resistance in Asia. Int J Antimicrob Agents. 2011; 37(4): 291-5. doi: 10.1016/j.ijantimicag.2011.01.009. [DOI:10.1016/j.ijantimicag.2011.01.009]
19. DeLeo FR, Chen L, Porcella SF, Martens CA, Kobayashi SD, Porter AR, et al. Molecular dissection of the evolution of carbapenem-resistant multilocus sequence type 258 Klebsiella pneumoniae. Proceedings of the National Academy of Sciences. 2014; 111(13): 4988-93. [DOI:10.1073/pnas.1321364111]
20. Snitkin ES, Zelazny AM, Thomas PJ, Stock F, Henderson DK, Palmore TN, et al. Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Science translational medicine. 2012; 4(148): 148ra16-ra16. doi: 10.1126/scitranslmed.3004129. [DOI:10.1126/scitranslmed.3004129]
21. Behzadian Nejad Q, Abdollahi A, Najar Peerayeh S, Forouhesh Tehrani H. Evaluation of bla-ctx-m-type gene in multi drug resistance Klebsiella pneumonia species isolated from clinical samples. Razi Journal of Medical Sciences. 2009; 15(60): 37-45.
22. Feizabadi MM, Etemadi G, Yadegarinia D, Rahmati M, Shabanpoor S, Bokaei S. Antibiotic-resistance patterns and frequency of extended-spectrum b-lactamase-producing isolates of Klebsiella pneumoniae in Tehran. Medical science monitor. 2006; 12(11): BR362-BR5.
23. Derakhshan S, Najar Peerayeh S, Fallah F, Bakhshi B, Rahbar M, Mohammad-Zadeh M. Identification of Extended Spectrum Beta-lactamase producing Klebsiella pneumoniae isolated from Intensive Care Unit (ICU) patients in three hospitals in Tehran. Infection, Epidemiology and Medicine. 2013; 1(1): 9-13.
24. Ashrafian F, Fallah F, Hashemi A, Erfanimanesh S, Amraei S, Tarashi S. First Detection of 16S rRNA Methylase and blaCTX-M-15 Genes among Klebsiella pneumoniae Strains Isolated from Hospitalized Patients in Iran. Res Mol Med (RMM). 2015, 3(4): 28-34.
25. Peerayeh SN, Rostami E, Siadat SD, Derakhshan S. High rate of aminoglycoside resistance in CTX-M-15 producing Klebsiella pneumoniae isolates in Tehran, Iran. Laboratory medicine. 2014; 45(3): 231-7. [DOI:10.1309/LMDQQW246NYAHHAD]
26. Galani I, Souli M, Panagea T, Poulakou G, Kanellakopoulou K, Giamarellou H. Prevalence of 16S rRNA methylase genes in Enterobacteriaceae isolates from a Greek university hospital. Clinical Microbiology and Infection. 2012; 18(3): E52-4. doi: 10.1111/j.1469-0691.2011.03738.x. [DOI:10.1111/j.1469-0691.2011.03738.x]
27. Ullah F, Malik SA, Ahmed J. Antimicrobial susceptibility pattern and ESBL prevalence in Klebsiella pneumoniae from urinary tract infections in the North-West of Pakistan. African Journal of Microbiology Research. 2009; 3(11): 676-80.
28. Nijssen S, Florijn A, Bonten M, Schmitz F, Verhoef J, Fluit A. Beta-lactam susceptibilities and prevalence of ESBL-producing isolates among more than 5000 European Enterobacteriaceae isolates. International journal of antimicrobial agents. 2004; 24(6): 585-91. [DOI:10.1016/j.ijantimicag.2004.08.008]
29. Jones RN, Biedenbach DJ, Gales AC. Sustained activity and spectrum of selected extended-spectrum β-lactams (carbapenems and cefepime) against Enterobacter spp. and ESBL-producing Klebsiella spp.: report from the SENTRY antimicrobial surveillance program (USA, 1997–2000). International journal of antimicrobial agents. 2003;21(1):1-7. [DOI:10.1016/S0924-8579(02)00249-2]
30. Li B, Hu Y, Wang Q, Yi Y, Woo PC, Jing H, et al. Structural diversity of class 1 integrons and their associated gene cassettes in Klebsiella pneumoniae isolates from a hospital in China. PloS one. 2013; 8(9): e75805. [DOI:10.1371/journal.pone.0075805]
31. Du J, Li P, Liu H, Lü D, Liang H, Dou Y. Phenotypic and molecular characterization of multidrug resistant Klebsiella pneumoniae isolated from a university teaching hospital, China. PloS one. 2014;9(4):e95181. doi: 10.1371/journal.pone.0095181. [DOI:10.1371/journal.pone.0095181]

Add your comments about this article : Your username or Email:
CAPTCHA code

Send email to the article author


© 2007 All Rights Reserved | Medical Laboratory Journal