Volume 12, Issue 2 (Mar-Apr 2018)                   mljgoums 2018, 12(2): 1-6 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Vizvari E, Farzanegi P, Abbas Zade Sourati H. Effect of Vigorous Aerobic Exercise on Serum Levels of SIRT1, FGF21 and Fetuin A in Women with Type II Diabetes. mljgoums. 2018; 12 (2) :1-6
URL: http://goums.ac.ir/mljgoums/article-1-1057-en.html
1- PhD Department of Exercise Physiology, Sari Branch, Islamic Azad University, Sari, Iran., Department of Exercise Physiology, Sari Branch, Islamic Azad University, Sari, Iran.
2- (PhD) Department of Exercise Physiology, Sari Branch, Islamic Azad University, Sari, Iran, Department of Exercise Physiology, Sari Branch, Islamic Azad University, Sari, Iran
3- Department of Exercise Physiology, Sari Branch, Islamic Azad University, Sari, Iran, Department of Exercise Physiology, Sari Branch, Islamic Azad University, Sari, Iran
Abstract:   (2069 Views)

        Background and Objectives: Sirtuin (SIRT), Fibroblast Growth Factor21 (FGF21) and Fetuin A are proteins that cause a wide range of metabolic disorders such as type 2 diabetes mellitus (T2DM). On the other hand, regular physical activity is known to play a key role in prevention and management of T2DM. Thus, this study investigated the effect of vigorous aerobic exercise on serum levels of metabolic parameters including SIRT1, FGF21 and Fetuin A in women with T2DM.

          Methods: The study was performed on 28 randomly selected women with T2DM who were divided into an exercise group and a control group. The training intervention consisted eight weeks of vigorous aerobic exercise (three times a week at 70-80% of maximum heart rate). The serum levels of SIRT1, FGF21 and Fetuin A were evaluated before the first session and 48 hours after the last session. Paired sample t-test and independent t-test were used to analyze within and between group differences, respectively. All statistical analyses were performed in SPSS (version 19) at significance of 0.05.
          Results: The eight-week aerobic training caused a significant reduction in body weight, body mass index, insulin resistance, low-density lipoprotein, fasting blood sugar, triglycerides and Fetuin A of women with T2DM. In addition, it caused a significant increase in SIRT1 and FGF21 levels. There was no significant difference in the level of high-density lipoprotein and cholesterol between the two groups.
          Conclusion: As a non-pharmacological therapy, regular aerobic exercise might improve the metabolic parameters, SIRT1, FGF21, and Fetuin A in women with T2DM.
          Keywords: Diabetes Mellitus Type 2, SIRT1, FGF21, Fetuin A, Exercise.
Full-Text [PDF 810 kb]   (298 Downloads)    
Type of Study: Original Paper | Subject: Special
Received: 2018/03/14 | Accepted: 2018/03/14 | Published: 2018/03/14

1. Dunson DB, Baird DD, Colombo B. Increased infertility with age in men and women. Obstetrics & Gynecology. 2004; 103(1): 51-6. DOI:10.1097/01.AOG.0000100153.24061.45 [DOI:10.1097/01.AOG.0000100153.24061.45]
2. Wilcox AJ, Baird DD, Weinberg CR. Time of implantation of the conceptus and loss of pregnancy. New England Journal of Medicine. 1999; 340(23):1796-9. DOI: 10.1056/NEJM199906103402304 [DOI:10.1056/NEJM199906103402304]
3. Sharkey AM, Smith SK. The endometrium as a cause of implantation failure. Best practice & research Clinical obstetrics & gynaecology. 2003;17(2): 289-307. [DOI:10.1016/S1521-6934(02)00130-X]
4. Bagchi IC, Kumar S, editors. Steroid-regulated molecular markers of implantation. Seminars in reproductive endocrinology. Seminars in Reproductive Endocrinology. 1999; 17(3): 235-240. [DOI:10.1055/s-2007-1016231]
5. Oehler MK, Rees MC, Bicknell R. Steroids and the endometrium. Current medicinal chemistry. 2000; 7(5): 543-60. [DOI:10.2174/0929867003374958]
6. Paulson RJ, Sauer MV, Lobo RA. Factors affecting embryo implantation after human in vitro fertilization: a hypothesis. American journal of obstetrics and gynecology. 1990; 163(6): 2020-3. [DOI:10.1016/0002-9378(90)90790-E]
7. Koot Y, Teklenburg G, Salker M, Brosens JJ, Macklon N. Molecular aspects of implantation failure. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2012;1822(12):1943-50. doi: 10.1016/j.bbadis.2012.05.017. [DOI:10.1016/j.bbadis.2012.05.017]
8. Norwitz ER, Schust DJ, Fisher SJ. Implantation and the survival of early pregnancy. New England Journal of Medicine. 2001; 345(19): 1400-8. DOI:10.1056/NEJMra000763. [DOI:10.1056/NEJMra000763]
9. Cunningham F, Leveno K, Bloom S, Hauth J, Rouse D, Spong C. Implantation, embryogenesis, and placental development: secretory or postovulatory endometrial phase. McGraw-Hill. 2010; 48.
10. Tsampalas M, Gridelet V, Berndt S, Foidart J-M, Geenen V, d'Hauterive SP. Human chorionic gonadotropin: a hormone with immunological and angiogenic properties. Journal of reproductive immunology. 2010; 85(1): 93-8. doi: 10.1016/j.jri.2009.11.008. [DOI:10.1016/j.jri.2009.11.008]
11. Homan G, Brown S, Moran J, Homan S, Kerin J. Human chorionic gonadotropin as a predictor of outcome in assisted reproductive technology pregnancies. Fertility and sterility. 2000; 73(2): 270-4. [DOI:10.1016/S0015-0282(99)00512-9]
12. Cole LA. Biological functions of hCG and hCG-related molecules. Reproductive Biology and Endocrinology. 2010; 8(1): 102. doi: 10.1186/1477-7827-8-102. [DOI:10.1186/1477-7827-8-102]
13. Lambers MJ, van Weering HG, van't Grunewold MS, Lambalk CB, Homburg R, Schats R, et al. Optimizing hCG cut-off values: a single determination on day 14 or 15 is sufficient for a reliable prediction of pregnancy outcome. European Journal of Obstetrics & Gynecology and Reproductive Biology. 2006; 127(1): 94-8. [DOI:10.1016/j.ejogrb.2005.12.023]
14. Licht P, Fluhr H, Neuwinger J, Wallwiener D, Wildt L. Is human chorionic gonadotropin directly involved in the regulation of human implantation? Molecular and cellular endocrinology. 2007; 269(1-2): 85-92. [DOI:10.1016/j.mce.2006.09.016]
15. Makrigiannakis A, Minas V, Kalantaridou SN, Nikas G, Chrousos GP. Hormonal and cytokine regulation of early implantation. Trends in Endocrinology & Metabolism. 2006;17(5):178-85. [DOI:10.1016/j.tem.2006.05.001]
16. Banerjee P, Fazleabas AT. Extragonadal actions of chorionic gonadotropin. Reviews in Endocrine and Metabolic Disorders. 2011; 12(4): 323. DOI:10.1016/j.tem.2006.05.001 [DOI:10.1016/j.tem.2006.05.001]
17. Cole LA. hCG, the wonder of today's science. Reproductive Biology and Endocrinology. 2012; 10(1): 24. doi: 10.1186/1477-7827-10-24. [DOI:10.1186/1477-7827-10-24]
18. Licht P, Russu V, Wildt L, editors. On the role of human chorionic gonadotropin (hCG) in the embryo-endometrial microenvironment: implications for differentiation and implantation. Seminars in reproductive medicine. 2001; 584-4662.
19. Edwards R. Chorionic gonadotrophin, genes and embryonic signals regulating the implantation window. Reproductive biomedicine online. 2007;14(4):538-9. [DOI:10.1016/S1472-6483(10)60904-2]
20. Bonduelle M-L, Dodd R, Liebaers I, Van Steirteghem A, Williamson R, Akhurst R. Chorionic gonadotrophin-β mRNA, a trophoblast marker, is expressed in human 8-cell embryos derived from tripronucleate zygotes. Hum Reprod. 1988; 3(7): 909-14. [DOI:10.1093/oxfordjournals.humrep.a136808]
21. Dokras A, Sargent I, Barlow D. Fertilization and early embryology: Human blastocyst grading: an indicator of developmental potential? Hum Reprod. 1993; 8(12): 2119-27. [DOI:10.1093/oxfordjournals.humrep.a137993]
22. Brosens JJ, Salker MS, Teklenburg G, Nautiyal J, Salter S, Lucas ES, et al. Uterine selection of human embryos at implantation. Scientific reports. 2014; 4: 3894. doi: 10.1038/srep03894. [DOI:10.1038/srep03894]
23. Riboldi M, Barros B, Piccolomini M, Alegretti J, Motta E, Serafini P. Does the intrauterine administration of rhCG before vitrified blastocysts transfer improves the potential of pregnancies when using blastocysts of inferior morphological grading? Fertility and Sterility. 2013; 100(3): S289. [DOI:10.1016/j.fertnstert.2013.07.1080]
24. Salker M, Teklenburg G, Molokhia M, Lavery S, Trew G, Aojanepong T, et al. Natural selection of human embryos: impaired decidualization of endometrium disables embryo-maternal interactions and causes recurrent pregnancy loss. PloS one. 2010; 5(4): e10287. [DOI:10.1371/journal.pone.0010287]
25. Paiva P, Hannan N, Hincks C, Meehan K, Pruysers E, Dimitriadis E, et al. Human chorionic gonadotrophin regulates FGF2 and other cytokines produced by human endometrial epithelial cells, providing a mechanism for enhancing endometrial receptivity. Hum Reprod. 2011; 26(5): 1153-62. doi: 10.1093/humrep/der027. [DOI:10.1093/humrep/der027]
26. Srivastava A, Sengupta J, Kriplani A, Roy KK, Ghosh D. Profiles of cytokines secreted by isolated human endometrial cells under the influence of chorionic gonadotropin during the window of embryo implantation. Reproductive Biology and Endocrinology. 2013; 11(1): 116. [DOI:10.1186/1477-7827-11-116]

Add your comments about this article : Your username or Email:

© 2007 All Rights Reserved | Medical Laboratory Journal