Volume 11, Issue 6 (Nov - Dec 2017)                   mljgoums 2017, 11(6): 7-11 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Parsa M, Ahmadi M, Dastmalchi H, Tehrani A. Antibacterial Effect of Silver Nanoparticles along with L-Arginine against P. aeruginosa. mljgoums. 2017; 11 (6) :7-11
URL: http://goums.ac.ir/mljgoums/article-1-1037-en.html
1- (PhD) Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran, Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran , parsamina26@gmail.com
2- (PhD) Professor of Bacteriology, Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran, Professor of Bacteriology, Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
3- (PhD) Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran, Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
4- (PhD) Department of Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran, Department of Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
Abstract:   (1042 Views)
         Background and Objectives: Nowadays, the prevalence of multidrug-resistant pathogens such as Pseudomonas aeruginosa is increasing worldwide. Many studies have been seeking new treatment strategies to treat infections caused by these microorganisms. Silver nanoparticles (AgNPs) along with L-arginine have significant antimicrobial effects and could be used as alternatives for ineffective drugs.
         Methods: In this study, the antibacterial activity of AgNPs, L-arginine and various concentrations of AgNPs along with L-arginine (12.5 and 25 mg/ml) were investigated against P. aeruginosa PAO1 using the broth macrodilution method.
        Results: Minimum inhibitory concentration of AgNPs, L-arginine and AgNPs combined with 25 and 12.5 mg/ml L-arginine was 15.6 μg/ml, 25 mg/ml, 1.9 μg/ml and 3.9 μg/ml, respectively. Minimum bactericidal concentration of AgNPs, L-arginine and AgNPs combined with 25 and 12.5  mg/ml L-arginine was 31.2 μg/ml, 50 mg/ml, 3.9 μg/ml and 7.8 μg/ml, respectively.
       Conclusion: Our study suggests that AgNPs along with L-arginine can be used as an alternative antibacterial agent against P. aeruginosa, and might be useful for treatment of wound infections.
       Keywords: Nanoparticles, Arginine, Anti-Bacterial Agents, Pseudomonas aeruginosa
Full-Text [PDF 656 kb]   (120 Downloads)    
Type of Study: Original Paper | Subject: Special
Received: 2018/01/22 | Accepted: 2018/01/22 | Published: 2018/01/22

1. Oliver A, Mulet X, López-Causapé C, Juan C. The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resistance Updates. 2015; 22: 41-59. doi: 10.1016/j.drup.2015.08.002. [DOI:10.1016/j.drup.2015.08.002]
2. Kerr KG, Snelling AM. Pseudomonas aeruginosa: a formidable and ever-present adversary. Journal of Hospital Infection. 2009; 73(4): 338-44. doi: 10.1016/j.jhin.2009.04.020. [DOI:10.1016/j.jhin.2009.04.020]
3. Williamson KS, Richards LA, Perez-Osorio AC, Pitts B, McInnerney K, Stewart PS, et al. Heterogeneity in Pseudomonas aeruginosa biofilms includes expression of ribosome hibernation factors in the antibiotic-tolerant subpopulation and hypoxia-induced stress response in the metabolically active population. Journal of bacteriology. 2012; 198(4): 2062-73. doi: 10.1128/JB.00022-12. [DOI:10.1128/JB.00022-12]
4. Yazah A, Yusuf J, Agbo A. Bacterial contaminants of Nigerian currency notes and associated risk factors. Research Journal of Medical Sciences. 2012; 6(1): 1-6. DOI: 10.3923/rjmsci.2012.1.6. [DOI:10.3923/rjmsci.2012.1.6]
5. Carlet J, Jarlier V, Harbarth S, Voss A, Goossens H, Pittet D. Ready for a world without antibiotics? The pensières antibiotic resistance call to action. Antimicrobial resistance and infection control. 2012;1(1):11. [DOI:10.1186/2047-2994-1-11]
6. Lerner A, Adler A, Abu-Hanna J, Percia SC, Matalon MK, Carmeli Y. Spread of KPC-producing carbapenem-resistant Enterobacteriaceae: the importance of super-spreaders and rectal KPC concentration. Clinical Microbiology and Infection. 2015; 21(5): 470. e1-. e7. doi: 10.1016/j.cmi.2014.12.015. [DOI:10.1016/j.cmi.2014.12.015]
7. Hawkey P. Multidrug-resistant Gram-negative bacteria: a product of globalization. Journal of Hospital Infection. 2015;89(4):241-7. doi: 10.1016/j.jhin.2015.01.008. [DOI:10.1016/j.jhin.2015.01.008]
8. Livermore D. The need for new antibiotics. Clinical Microbiology and Infection. 2004; 10(s4):1-9. [DOI:10.1111/j.1465-0691.2004.1004.x]
9. Talbot GH, Bradley J, Edwards JE, Gilbert D, Scheld M, Bartlett JG. Bad bugs need drugs: an update on the development pipeline from the Antimicrobial Availability Task Force of the Infectious Diseases Society of America. Clinical infectious diseases. 2006; 42(5): 657-68. DOI:10.1086/499819. [DOI:10.1086/499819]
10. Mulvey MR, Simor AE. Antimicrobial resistance in hospitals: how concerned should we be? Canadian Medical Association Journal. 2009; 180(4): 408-15. doi: 10.1503/cmaj.080239. [DOI:10.1503/cmaj.080239]
11. Otter JA, French GL. Nosocomial transmission of community-associated meticillin-resistant Staphylococcus aureus: an emerging threat. The Lancet infectious diseases. 2006; 6(12): 753-5. DOI:10.1016/S1473-3099(06)70636-3. [DOI:10.1016/S1473-3099(06)70636-3]
12. Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine. 2007; 3(1): 95-101. DOI:10.1016/j.nano.2006.12.001. [DOI:10.1016/j.nano.2006.12.001]
13. Martinez-Gutierrez F, Olive PL, Banuelos A, Orrantia E, Nino N, Sanchez EM, et al. Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine. 2010; 6(5): 681-8. doi: 10.1016/j.nano.2010.02.001. [DOI:10.1016/j.nano.2010.02.001]
14. Lok C-N, Ho C-M, Chen R, He Q-Y, Yu W-Y, Sun H, et al. Silver nanoparticles: partial oxidation and antibacterial activities. JBIC Journal of Biological Inorganic Chemistry. 2007; 12(4): 527-34. DOI:10.1007/s00775-007-0208-z. [DOI:10.1007/s00775-007-0208-z]
15. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005; 16(10): 2346. doi: 10.1088/0957-4484/16/10/059. [DOI:10.1088/0957-4484/16/10/059]
16. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnology advances. 2009; 27(1): 76-83. [DOI:10.1016/j.biotechadv.2008.09.002]
17. Eckhardt S, Brunetto PS, Gagnon J, Priebe M, Giese B, Fromm KM. Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine. Chemical reviews. 2013; 113(7): 4708-54. DOI: 10.1021/cr300288v. [DOI:10.1021/cr300288v]
18. Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. small. 2008; 4(1): 26-49. doi: 10.1002/smll.200700595. [DOI:10.1002/smll.200700595]
19. Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci. 2005; 88(2): 412-9. DOI:10.1093/toxsci/kfi256. [DOI:10.1093/toxsci/kfi256]
20. Morris SM. Arginine: beyond protein. The American journal of clinical nutrition. 2006; 83(2): 508S-12S.
21. Jing W, Demcoe AR, Vogel HJ. Conformation of a bactericidal domain of puroindoline a: structure and mechanism of action of a 13-residue antimicrobial peptide. Journal of bacteriology. 2003; 185(16): 4938-47. [DOI:10.1128/JB.185.16.4938-4947.2003]
22. Agnihotri S, Bajaj G, Mukherji S, Mukherji S. Arginine-assisted immobilization of silver nanoparticles on ZnO nanorods: an enhanced and reusable antibacterial substrate without human cell cytotoxicity. Nanoscale. 2015; 7(16): 7415-29. doi: 10.1039/c4nr06913g. [DOI:10.1039/C4NR06913G]
23. Takayama A, Yoshikawa R, Iyoku S, Kasuga NC, Nomiya K. Synthesis, structure and antimicrobial activity of L-argininesilver (1+) nitrate. Polyhedron. 2013; 52: 844-7. DOI: 10.1016/j.poly.2012.07.031. [DOI:10.1016/j.poly.2012.07.031]
24. Zhang T, Wang L, Chen Q, Chen C. Cytotoxic potential of silver nanoparticles. Yonsei Med J. 2014; 55(2): 283-91. doi: 10.3349/ymj.2014.55.2.283. [DOI:10.3349/ymj.2014.55.2.283]
25. Chernousova S, Epple M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angewandte Chemie International Edition. 2013; 52(6): 1636-53. DOI: 10.1002/anie.201205923. [DOI:10.1002/anie.201205923]
26. Spange S, Pfuch A, Wiegand C, Beier O, Hipler UC, Grünler B. Atmospheric pressure plasma CVD as a tool to functionalise wound dressings. Journal of Materials Science: Materials in Medicine. 2015; 26(2): 1-9. doi: 10.1007/s10856-015-5417-3. [DOI:10.1007/s10856-015-5417-3]
27. Jones SA, Bowler PG, Walker M, Parsons D. Controlling wound bioburden with a novel silver‐containing Hydrofiber® dressing. Wound Repair and Regeneration. 2004; 12(3): 288-94. DOI:10.1111/j.1067-1927.2004.012304.x [DOI:10.1111/j.1067-1927.2004.012304.x]
28. Meng H, Liong M, Xia T, Li Z, Ji Z, Zink JI, et al. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS nano. 2010; 4(8): 4539-50. doi: 10.1021/nn100690m. [DOI:10.1021/nn100690m]
29. Godin B, Sakamoto JH, Serda RE, Grattoni A, Bouamrani A, Ferrari M. Emerging applications of nanomedicine for the diagnosis and treatment of cardiovascular diseases. Trends in pharmacological sciences. 2010; 31(5): 199-205. doi: 10.1016/j.tips.2010.01.003. [DOI:10.1016/j.tips.2010.01.003]
30. Ivask A, ElBadawy A, Kaweeteerawat C, Boren D, Fischer H, Ji Z, et al. Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. Acs Nano. 2013; 8(1): 374-86. DOI: 10.1021/nn4044047. [DOI:10.1021/nn4044047]
31. Tran QH, Le AT. Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2013; 4(3): 033001. DOI:10.1088/2043-6262/4/3/033001. [DOI:10.1088/2043-6262/4/3/033001]
32. Martínez-Gutierrez F, Thi EP, Silverman JM, de Oliveira CC, Svensson SL, Hoek AV, et al. Antibacterial activity, inflammatory response, coagulation and cytotoxicity effects of silver nanoparticles. Nanomedicine. 2012; 8(3): 328-36. doi: 10.1016/j.nano.2011.06.014. [DOI:10.1016/j.nano.2011.06.014]
33. Hamouda T, Myc A, Donovan B, Shih AY, Reuter JD, Baker JR. A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi. Microbiological research. 2001; 156(1): 1-7. [DOI:10.1078/0944-5013-00069]
34. Dibrov P, Dzioba J, Gosink KK, Häse CC. Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae. Antimicrobial agents and chemotherapy. 2002; 46(8): 2668-70. doi: 10.1128/AAC.46.8.2668-2670.2002. [DOI:10.1128/AAC.46.8.2668-2670.2002]
35. Dragieva I, Stoeva S, Stoimenov P, Pavlikianov E, Klabunde K. Complex formation in solutions for chemical synthesis of nanoscaled particles prepared by borohydride reduction process. Nanostructured materials. 1999; 12(1-4): 267-70. DOI: 10.1016/S0965-9773(99)00114-2. [DOI:10.1016/S0965-9773(99)00114-2]
36. Mendis E, Rajapakse N, Byun H-G, Kim S-K. Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects. Life Sciences. 2005; 77(17): 2166-78. DOI:10.1016/j.lfs.2005.03.016. [DOI:10.1016/j.lfs.2005.03.016]
37. Quinteros MA, Aiassa Martínez IM, Dalmasso PR, Páez PL. Silver nanoparticles: biosynthesis using an ATCC reference strain of Pseudomonas aeruginosa and activity as broad spectrum clinical antibacterial agents. International Journal of Biomaterials. 2016; ID 5971047.
38. Aliakbar N, Roghayeh AG, Seyed Ali N, Majidreza A, Sharareh H, Masoud A, et al. Evaluation of the Antimicrobial Activity of Silver Nanoparticles on Antibiotic-Resistant Pseudomonas aeruginosa. International Journal of Basic Science in Medicine. 2016; 1(1): 25-8. DOI:10.15171/ijbsm.2016.06. Guzman M, Dille J, Godet S. Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine: Nanotechnology, Biology and Medicine. 2012; 8(1): 37-45. doi: 10.1016/j.nano.2011.05.007. [DOI:10.15171/ijbsm.2016.06]
39. Silver S. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS microbiology reviews. 2003; 27(2-3): 341-53. [DOI:10.1016/S0168-6445(03)00047-0]
40. Luther EM, Koehler Y, Diendorf J, Epple M, Dringen R. Accumulation of silver nanoparticles by cultured primary brain astrocytes. Nanotechnology. 2011; 22(37): 375101. doi: 10.1088/0957-4484/22/37/375101. [DOI:10.1088/0957-4484/22/37/375101]
41. Sinha S, Goel SC. Effect of amino acids lysine and arginine on fracture healing in rabbits: A radiological and histomorphological analysis. Indian journal of orthopaedics. 2009; 43(4): 328-334. doi: 10.4103/0019-5413.55972. [DOI:10.4103/0019-5413.55972]
42. Debats IB, Wolfs TG, Gotoh T, Cleutjens JP, Peutz-Kootstra CJ, van der Hulst RR. Role of arginine in superficial wound healing in man. Nitric Oxide. 2009; 21(3-4): 175-83. doi: 10.1016/j.niox.2009.07.006. [DOI:10.1016/j.niox.2009.07.006]
43. Blondelle SE, Houghten RA. Novel antimicrobial compounds identified using synthetic combinatorial library technology. Trends in biotechnology. 1996; 14(2): 60-5. DOI:10.1016/0167-7799(96)80922-X. [DOI:10.1016/0167-7799(96)80922-X]
44. Jiang B, Larson JC, Drapala PW, Pérez‐Luna VH, Kang‐Mieler JJ, Brey EM. Investigation of lysine acrylate containing poly (N‐isopropylacrylamide) hydrogels as wound dressings in normal and infected wounds. J Biomed Mater Res B Appl Biomater. 2012; 100(3): 668-76. doi: 10.1002/jbm.b.31991. [DOI:10.1002/jbm.b.31991]
45. Deepa I, Kumar SN, Sreerag RS, Nath VS, Mohandas C. Purification and synergistic antibacterial activity of arginine derived cyclic dipeptides, from Achromobacter sp. associated with a rhabditid entomopathogenic nematode against major clinically relevant biofilm forming wound bacteria. Frontiers in microbiology. 2015; 6: 876. doi: 10.3389/fmicb.2015.00876. [DOI:10.3389/fmicb.2015.00876]
46. Chan DI, Prenner EJ, Vogel HJ. Tryptophan-and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2006; 1758(9): 1184-202. DOI:10.1016/j.bbamem.2006.04.006. [DOI:10.1016/j.bbamem.2006.04.006]
47. Rahimi R, Nikfar S, Larijani B, Abdollahi M. A review on the role of antioxidants in the management of diabetes and its complications. Biomed Pharmacother. 2005; 59(7): 365-73. DOI:10.1016/j.biopha.2005.07.002. [DOI:10.1016/j.biopha.2005.07.002]
48. Tang H, Zhang P, Kieft TL, Ryan SJ, Baker SM, Wiesmann WP, et al. Antibacterial action of a novel functionalized chitosan-arginine against Gram-negative bacteria. Acta Biomater. 2010; 2562-71. doi: 10.1016/j.actbio.2010.01.002. [DOI:10.1016/j.actbio.2010.01.002]

Add your comments about this article : Your username or Email:
Write the security code in the box

Send email to the article author

© 2007 All Rights Reserved | Medical Laboratory Journal