Frequency of Anti-Mycoplasma hominis Antibodies in Infertile Women Referred to Al-Zahra Hospital in Tabriz, Iran

Zahra Mohammadoghli Reihan
(MSc)
Department of Microbiology, Faculty of Basic Sciences, Islamic Azad University, Ahar Branch, Ahar, Iran

Mehdi Ghiami Rad (PhD)
Department of Microbiology, Faculty of Basic Sciences, Islamic Azad University, Ahar Branch, Ahar, Iran

Mahtab Sattari (MSc)
Microbiology Department, Faculty of Basic Sciences, Islamic Azad University, Ahar Branch, Ahar, Iran

Email: Zahra_Reihan@yahoo.com
Tel: +989148312720

Corresponding author: Zahra Mohammadoghli Reihan

Address: Department of Microbiology, Faculty of Basic Sciences, Islamic Azad University, Ahar Branch, Ahar, Iran

Received: 21 Feb 2017
Revised: 01 May 2017
Accepted: 03 May 2017

ABSTRACT

Background and Objectives: Infertility is one of the important causes of anxiety in couples. Infections caused by genital Mycoplasmas may have harmful effects on the reproductive health of women, and sometimes lead to infertility. This study was designed to determine frequency of anti-Mycoplasma hominis antibodies in infertile women at Al-Zahra Hospital, Tabriz, Iran.

Methods: In this cross-sectional study, serum from 184 infertile women and 100 healthy pregnant women were tested for presence of M. hominis IgM and IgG antibodies by ELISA. Data collected were analyzed in SPSS (version 17) using t-test at significance level of 0.05.

Results: The frequency of anti-M. hominis IgG was significantly higher in infertile women compared to healthy controls. The frequency of anti-M. hominis IgM did not differ significantly between the infertile and control subjects. The majority of the women infected with the bacterium were in the 21–30 and 31–40 years age range. There was no significant correlation between tubal factor infertility and seropositivity for M. hominis antibodies. Moreover, the dwelling of the participants had no relationship with the frequency of anti-M. hominis antibodies.

Conclusion: The frequency of infertile women infected with this bacterium is high in Tabriz. Therefore, it is important to perform microbial screening for this bacterium in infertile couples.

Keywords: Mycoplasma hominis, Infertility, Women, Tabriz.
INTRODUCTION

Infertility is one of the most important causes of anxiety in couples, which affects their personality traits (1). It is defined as the inability to conceive after regular unprotected intercourse for a year, or carry a child to live birth (2, 3). Epidemiologic studies have indicated that 80% of normal non-contracepting women become pregnant within one year. Infertility is divided into primary infertility (no history of a previous pregnancy) and secondary infertility (pregnancy has occurred before) (4). A survey by the World Health Organization (WHO) has shown that 43% of women and 30.1% of men suffer from infertility worldwide (5). There are several factors involved in infertility, including environmental and genetic factors and infections (6, 7). There is a significant relationship between subclinical infections and fertility. Infection may cause infertility through different mechanisms. Mycoplasma hominis is the causative agent for reproductive tract infections (8). These infections are often asymptomatic and have negative effects on the reproductive health (9). Mycoplasma is a part of the normal flora of the genitourinary tract but can act as an opportunistic pathogen (10). Tubal factor infertility (TFI) is one of the most important causes of infertility in women. Uterine tube infections cause severe pain and irritation, and can lead to infertility or ectopic pregnancy. Most of these infections are caused by Mycoplasma, Ureaplasma species and Chlamydia trachomatis (11-13). M. hominis prevents implantation by producing neuraminidase, causing ovule poisoning. In addition, the microorganism can cause abortion or decrease the number and efficiency of sperms by altering pH of vaginal area. If not diagnosed and treated, these infections could become chronic and cause pelvic inflammatory disease and infertility. Clinical diagnosis of the bacteria and screening of young infertile couples are necessary (9). Limited number of studies has been performed on diagnosis of M. hominis and its effects on infertility in Iran. For instance, Najarpiraye et al. found a significant relationship between M. hominis and cervicitis (14). In addition, Salari et al. reported a significant difference in the prevalence of M. hominis between infertile women and healthy controls (15). However, limited information is available on the effects of M. hominis on infertility in Tabriz, Iran. Therefore, this study aimed to detect and determine the frequency of anti-M. hominis antibodies in serum samples of infertile women.

MATERIAL AND METHODS

In this cross-sectional study, plasma samples were randomly selected from infertile women referred to Al-Zahra Hospital in Tabriz between November 2014 and April 2015. The study has been approved by the ethics committee of the Department of Sciences and Technology of Tabriz University of Medical Sciences (Code: TBZMED.REC.1394.1211). Sample size included 184 infertile women and 100 healthy pregnant women (as controls) aged 16-45 years. The women with history of chronic diseases like tuberculosis and immunologic disorders were excluded from the study. The participants completed a questionnaire on information including dwelling, age, history of infertility in relatives and previous proceeding. In order to detect anti-M. hominis IgG and IgM antibodies, 5-ml blood samples were collected in caped vacuum tubes under sterile condition. The tubes were centrifuged at 2000 rpm for 10 minutes. Serum was separated and transferred into a microtube and kept at -70 °C. M. hominis IgM/IgG ELISA Kits (Vircell Co., Germany) with 98% sensitivity and 97% specificity and an ELISA Plate Reader (Awareness 14; Model 3200) were used for analysis of the samples. The concentration of antibodies obtained were calculated and compared with standard values. OD of antibodies was calculated according to the following formula: Antibody index = (sample OD/ cut-off serum mean OD) x 10. The results were interpreted as follows: Negative: <9, ≥ 9 – <11: Equivocal, ≥11: Positive. Data collected were analyzed in SPSS software (version 17) using t-test, Pearson correlation coefficient and one-way analysis of variance. P-values less than 0.05 were considered as statistically significant.

RESULTS

Of 284 women, 214 were from urban areas and 70 from rural areas. The participants were divided into quartiles based on their age: less than 20, 21-30, 31-40 and more than 40 years. The majority of the women were in the 21-30
age range. In addition, infertile women had significantly higher amount of anti-\textit{M. hominis} IgG antibody compared to the controls (P= 0.000). There was no significant difference between the two groups in terms of anti-\textit{M. hominis} IgM antibody level (Table 1).

There was no significant relationship between age and the amount of anti-\textit{M. hominis} IgG and IgM in infertile women (Table2).

Moreover, there was no significant relationship between the dwelling and frequency of anti-\textit{M. hominis} antibodies (Table 3).

Moreover, there was no significant relationship between the location of residence and frequency of anti-\textit{M. hominis} antibodies (Table 3).

Table 1 - Frequency distribution of IgG and IgM antibodies

<table>
<thead>
<tr>
<th>Antibody titer</th>
<th>IgG</th>
<th>IgM</th>
</tr>
</thead>
<tbody>
<tr>
<td><9 (Negative)</td>
<td>88 (88)</td>
<td>90 (90)</td>
</tr>
<tr>
<td>≥9 to <11 (Equivocal)</td>
<td>8 (8)</td>
<td>4 (4)</td>
</tr>
<tr>
<td>≥11 (Positive)</td>
<td>4 (4)</td>
<td>2 (1.08)</td>
</tr>
<tr>
<td>Total</td>
<td>100 (100)</td>
<td>174 (94.56)</td>
</tr>
</tbody>
</table>

*Independent t-test and Levene's test for equality of variances Data presented as n (%). (n=284 in each group

Table 2 - The number of subjects in each age group

<table>
<thead>
<tr>
<th>Pregnancy status</th>
<th>Age range (years)</th>
<th>Total</th>
<th>P-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fertile women</td>
<td><20</td>
<td>8</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>21-30</td>
<td>50</td>
<td>0.508</td>
</tr>
<tr>
<td></td>
<td>31-40</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>>40</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Infertile women</td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>82</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>68</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>184</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>284</td>
<td></td>
</tr>
</tbody>
</table>

*Pearson correlation coefficient was used for statistical analysis

Table 3 - Frequency distribution of IgG and IgM antibodies according to the location of residence

<table>
<thead>
<tr>
<th>Antibody titer</th>
<th>IgG</th>
<th>IgM</th>
</tr>
</thead>
<tbody>
<tr>
<td><9 (Negative)</td>
<td>126</td>
<td>196</td>
</tr>
<tr>
<td>≥9 to <11 (Equivocal)</td>
<td>56</td>
<td>68</td>
</tr>
<tr>
<td>≥11 (Positive)</td>
<td>64</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>214</td>
<td>264</td>
</tr>
</tbody>
</table>

*One-way ANOVA was used for statistical analysis

Table 4 - Frequency distribution of TFI in the study

<table>
<thead>
<tr>
<th>Fertility explanation</th>
<th>Uterus tube</th>
<th>Total</th>
<th>P-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both opened</td>
<td>Both closed</td>
<td>1 opened/ 1 closed</td>
<td>100</td>
</tr>
<tr>
<td>No</td>
<td>164</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>264</td>
<td>12</td>
<td>8</td>
</tr>
</tbody>
</table>

*One-way ANOVA was used for statistical analysis
DISCUSSION
Infertility is becoming a global health problem (16). Average rate of infertility is 8-12% in different countries. Infections can affect the fertility process through different mechanisms (17). M. hominis is a part of the normal genital flora of both men and women but may cause infertility. In this study, anti-M. hominis IgG antibody titer was significantly higher in infertile women compared to pregnant women. However, level of anti-M. hominis IgM antibody did not differ significantly between the two groups. These results are inconsistent with the results of Miron et al. in terms of anti-M. hominis IgG antibody titer (18), and in partial agreement with studies of Gunyeli et al., Grzesko et al., Reid et al. and Fenkci et al. in terms of the anti-M. hominis IgM antibody titer (19-22).
We also found no significant association between dwelling and the frequency of anti-M. hominis. Moreover, there was no significant relationship between age of the subjects and frequency of anti-M. hominis antibodies. However, frequency of infection with the bacterium was higher in the women aged 21-30 and 31-40 years. These results are in line with the results of Ahmadi et al. (23) and Najarpireyeh (14).
Blockage of fallopian tubes had no significant relationship with the level of anti-M. hominis antibodies. This is inconsistent with the results of Baczynska et al. (24) but in agreement with the study of Costoya et al. (25). The difference in the results of previous studies may be due to differences in sample size, the diagnostic methods used and sociocultural conditions.

CONCLUSION
The frequency of anti-M. hominis antibodies is relatively high in infertile women. Considering the significant association between infertility and presence of M. hominis antibody, it is important to perform microbial screening for this bacterium in infertile couples.

ACKNOWLEDGMENTS
We would like to thank Ms. Rena Yosefzadeh from the central laboratory of Eastern Azerbaijan and Mr. Gadder Mohammadi from Azad University of Ahar for helping us in this study.

CONFLICT OF INTEREST
The authors declare that there is no conflict of interest.

REFERENCES

