|
|
|
|
Search published articles |
|
|
Showing 1 results for Mohadjerani
Elham Hajian Kelarijani , Maryam Mohadjerani, Volume 24, Issue 4 (12-2022)
Abstract
Background and Objective: Spirulina (Spirulina platensis) has numerous nutritional and therapeutic benefits. This experimental study aimed to investigate the effect of spirulina on changes in the levels of liver enzymes of male BALB/c mice exposed to a high dose of acetaminophen.
Methods: In this experimental study, 42 adult male BALB/c mice were divided into seven groups of six. The toxic dose of acetaminophen 600 mg/kg body weight was considered. The control group received only a standard diet and water. The sham group was gavaged with saline solution. The third to seventh groups were treated as: acetaminophen; spirulina 600 mg/kg/bw, spirulina 300 mg/kg/bw, spirulina 600 mg/kg/bw + acetaminophen, and spirulina 300 mg/kg/bw + acetaminophen, respectively. In all groups, mice were treated with acetaminophen and spirulina powder by gavage for 14 consecutive days. Twenty-four hours after receiving the last dose of medication and deprivation of food (the animals still had access to water), the animals were anesthetized and blood samples were taken from the heart. Activity of liver enzymes including alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) was measured by spectrophotometry. Protein concentration was determined by the Lowry method. Catalase activity was assessed using hydrogen peroxide. The amount of malondialdehyde was measured and the total antioxidant capacity was determined by FRAP method by reducing ferric to ferro ions.
Results: The levels of serum transaminases (ALT, AST, ALP) as well as the level of total antioxidant capacity and malondialdehyde of the acetaminophen-treated group increased significantly compared to the control group (P<0.05). The levels of these enzymes in the group treated with S. platensis 300 mg/kg/bw + acetaminophen decreased significantly compared to the group treated with acetaminophen (P<0.05). Catalase activity in the acetaminophen group was significantly decreased compared to the control group (P<0.05).In the group of S. platensis 300 mg/kg/bw + acetaminophen, catalase activity increased significantly compared to the acetaminophen group (P<0.05). The results of experiments in two groups of spirulina and acetaminophen showed that the active ingredients of the algae at a dose of 300 worked better than 600 mg per kg of body weight in response to oxidative stress.
Conclusion: Consuming 300 mg/kg of S. platensis along with a near toxic dose of acetaminophen increases resistance to oxidative stress and injuries caused by drug poisoning by affecting the activity of enzymes and the antioxidant defense system.
|
|
|
|
|
|