[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Editorial Board::
Executive Members::
Instruction to Authors::
Peer Review::
Articles Archive::
Indexing Databases::
Contact Us::
Site Facilities::
::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
:: Search published articles ::
Showing 1 results for Kheirabadi M

Mahdavi Shahri N, Moghaddam Matin M, Fereidoni M, Behnam Rassouli M, Moghimi A, Bahrami Ar, Namini Ma, Naderi S, Kheirabadi M, Naseri F,
Volume 15, Issue 4 (12-2013)
Abstract

Tissue engineering is based on three main factors including scaffolds, cells and growth factors. Natural scaffolds derived from decellularized tissues and organs have been successfully used in tissue engineering. Decellularization studies have shown that natural scaffolds which maintaine their main structure and properties could be a suitable tool for studying cellular behaviors and preparation of such scaffolds is an important part of future research in biology that may have extensive applications in regenerative medicine and tissue engineering. Blastema tissue which is produced after injuries in some organisms has embryonic cell characteristics, and can be a suitable model for evaluation of cell behaviors in various tissues. In this review, the process of decellularization, process involved in preparation of 3D scaffolds derived from extracellular matrix of various tissues including cartilage, bone, gingiva, aorta and bladder, and assessment of their interactions with blastema tissue under in vitro conditions are discussed.

Page 1 from 1     

مجله دانشگاه علوم پزشکی گرگان Journal of Gorgan University of Medical Sciences
Persian site map - English site map - Created in 0.13 seconds with 25 queries by YEKTAWEB 4660
Creative Commons License
This work is licensed under a Creative Commons — Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)