Effect of exercise program and Curcumin supplementation on serum level of immunoglobulin A in rats exposed to lead Acetate

Mirdar Sh (Ph.D)*1, Ramezannezhad AA (M.Sc)2, Arzani A (M.Sc)2, Alinezhad M (M.Sc)2, Hajizade A (Ph.D)3

1Associate Professor, Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Mazandaran, Babolsar, Iran. 2Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Mazandaran, Babolsar, Iran. 3Assistant Professor, Department of Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran.

Abstract

Background and Objective: Lead as an environmental pollutant can damage the immune system. This study was done to determine the effect of moderate-intensity exercise and Curcumin supplement on serum level of immunoglobulin A in rats exposed to lead acetate.

Methods: In this experimental study, 46 male rats were allocated into six groups including; Control (C), vehicle (V), lead (L), lead and exercise (LE), lead and curcumin (LC), Lead+exercise+curcumin (LEC). Animals in training groups ran on treadmill for 8 weeks (25-64 minutes per daily, 15-22 meter/minute and 0% grade). Animals in Lead, LE, LC and LEC groups were received lead acetate (20 mg/kg/bw) and vehicle animals were received ethyl oleat (30 mg/kg/bw) Intraperitoneally for 3 days per week for 8 weeks. Rats in curcumin and LEC groups were received Curcumin (30mg/kg/bw), for 3 day per week for 8 weeks. IgA level were measured by single radial immuno diffusion method.

Results: Lead acetate significantly increased MDA levels at P<0.05 in animals. IgA level was 0.2, 0.41 and 0.47 mg/dL in Lead, LE and LEC groups (P<0.05).

Conclusion: The simultaneous use of endurance exercise training and curcumin due to increased IgA activity has beneficial effects against lead poisoning.

Keywords: Lead acetate, Immunoglobulin A, Endurance training, Curcumin

* Corresponding Author: Mirdar Sh (Ph.D), E-mail: shadmehr.mirdar@gmail.com

Received 5 June 2012 Revised 28 October 2013 Accepted 7 December 2013