:: Volume 23, Issue 4 (Winter 2022) ::
J Gorgan Univ Med Sci 2022, 23(4): 81-88 Back to browse issues page
Antibacterial and Hemolytic Effect of Nanoparticles Zinc / Ferrite / Cellulose Bioconjugated with Vancomycin Antibiotics
Minoo Akbari1 , Ali Hossein Rezayan * 2, Hossein Rastegar3, Mahmoud Alebouyeh4
1- Ph.D Candidate in Nanobiotechnology, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran..
2- Associate Professor, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran. , ahrezayan@ut.ac.ir
3- Professor, Cosmetic Products Research Center, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
4- Associate Professor, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
Abstract:   (3028 Views)
Background and Objective: Binding of antibiotics to nanoparticles increases the antibacterial potential of nanoparticles and antibiotics. This study was performed to determine the antibacterial and hemolytic effect of zinc / ferrite / cellulose nanocomposite (ZnFe2O4 @ Cell) (single nanoparticle), zinc / ferrite / cellulose nanocomposite was aminated with 3-aminopropyltriethoxysilane (APTES) with the name of ZnFe2O4@Cell@APTES (Coated nanocomposite) and ZnFe2O4@Cell@APTES@Van nanocomposite (coated nanocomposite bound to vancomycin) against gram-negative bacteria Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa) and gram-positive bacterium Staphylococcus aureus (S. aureus).
Methods: In this descriptive study, antibacterial-activity was evaluated by broth macro dilution method. Minimum inhibitory concentration (MIC) and minimum lethal concentration (MBC) were determined for E. coli, S. aurous and P. aeruginosa. The hemolytic activity of nanoparticles was investigated by colorimetric method.
Results: Nanoparticles did not have hemolytic activity. ZnFe2O4@Cell and ZnFe2O4@Cell@APTES@Van did not have a significant antibacterial effect against gram-positive and gram-negative bacteria, and vancomycin binding resulted in antibacterial-activity. ZnFe2O4@Cell@APTES@Van inhibited the growth of Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa. The growth of E. coli was reduced to 85% at a concentration of 0.4 mg/ml and a concentration of 0.1 mg nanoparticles completely prevented the growth of P. aeruginosa. The growth of gram-positive S. aureus bacteria at a concentration of 0.3 mg/ml nanoparticles was completely stopped.
Conclusion: Vancomycin-modified nanocomposite has antibacterial-activity against both gram-positive and gram-negative bacteria and has the potential to overcome the antibiotic resistance of bacteria.
Keywords: Nanoparticles [MeSH], Escherichia coli [MeSH], Staphylococcus aureus [MeSH], Pseudomonas aeruginosa [MeSH], ZnFe2O4@Cell@APTES@Van ,
Article ID: Vol23-58
Full-Text [PDF 851 kb]   (1437 Downloads)    
Type of Study: Original Articles | Subject: Nanobiotecnology
References
1. Rajaei M, Foroughi MM, Jahani S, Shahidi Zandi M, Hassani Nadiki H. Sensitive detection of morphine in the presence of dopamine with La3+ doped fern-like CuO nanoleaves/MWCNTs modified carbon paste electrode. J Mol Liq. 2019 Jun; 284: 462-72. DOI: 10.1016/j.molliq.2019.03.135 [Article] [DOI]
2. Mofazzal Jahromi MA, Sahandi Zangabad P, Moosavi Basri SM, Sahandi Zangabad K, Ghamarypour A, Aref AR, et al. Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing. Adv Drug Deliv Rev. 2018 Jan; 123: 33-64. DOI: 10.1016/j.addr.2017.08.001 [DOI] [PubMed]
3. Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 2005 Mar; 1(3): 325-27. DOI: 10.1002/smll.200400093 [DOI] [PubMed]
4. Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018 Oct; 11: 1645-58. DOI: 10.2147/IDR.S173867 [DOI] [PubMed]
5. Zhu X, Radovic-Moreno AF, Wu J, Langer R, Shi J. Nanomedicine in the Management of Microbial Infection - Overview and Perspectives. Nano Today. 2014 Aug; 9(4): 478-98. DOI: 10.1016/j.nantod.2014.06.003 [DOI] [PubMed]
6. Teixeira MC, Sanchez-Lopez E, Espina M, Calpena AC , Silva AM , Veiga FJ, et al. Advances in antibiotic nanotherapy: Overcoming antimicrobial resistance. In: Shegokar R, Souto EB. Emerging Nanotechnologies in Immunology. 1st ed. Elsevier. 2018; pp: 233-59. DOI: 10.1016/B978-0-323-40016-9.00009-9 [DOI]
7. Zaidi S, Misba L, Khan AU. Nano-therapeutics: A revolution in infection control in post antibiotic era. Nanomedicine. 2017 Oct; 13(7): 2281-301. DOI: 10.1016/j.nano.2017.06.015 [DOI] [PubMed]
8. Jijie R, Barras A, Teodorescu F, Boukherroub R, Szunerits S. Advancements on the molecular design of nanoantibiotics: current level of development and future challenges. Mol Syst Des Eng. 2017; 2(4): 349-69. DOI: 10.1039/C7ME00048K [Article] [DOI]
9. Saúde a, Franco OL. Functionalization of nanostructures for antibiotic improvement: an interdisciplinary approach. Ther Deliv. 2016 Nov; 7(11): 761-71. DOI: 10.4155/tde-2016-0047 [DOI] [PubMed]
10. Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R. Alternative antimicrobial approach: nano-antimicrobial materials. Evid Based Complement Alternat Med. 2015; 2015: 246012. DOI: 10.1155/2015/246012 [DOI] [PubMed]
11. Ramanavičius S, Žalnėravičius R, Niaura G, Drabavičius A, Jagminas A. Shell-dependent antimicrobial efficiency of cobalt ferrite nanoparticles. Nano-Structures & Nano-Objects. 2018 Jul; 15: 40-47. DOI: 10.1016/j.nanoso.2018.03.007 [Article] [DOI]
12. Chakraborty SP, Sahu SK, Mahapatra SK, Santra S, Bal M, Roy S, et al. Nanoconjugated vancomycin: new opportunities for the development of anti-VRSA agents. Nanotechnology. 2010 Mar; 21(10): 105103. DOI: 10.1088/0957-4484/21/10/105103 [DOI] [PubMed]
13. Natan M, Banin E. From Nano to Micro: using nanotechnology to combat microorganisms and their multidrug resistance. FEMS Microbiol Rev. 2017 May; 41(3): 302-22. DOI: 10.1093/femsre/fux003 [DOI] [PubMed]
14. Raghunath A, Perumal E. Metal oxide nanoparticles as antimicrobial agents: a promise for the future. Int J Antimicrob Agents. 2017 Feb; 49(2): 137-52. DOI: 10.1016/j.ijantimicag.2016.11.011 [DOI] [PubMed]
15. Arias LS, Pessan JP, Miranda Vieira AP, Toito de Lima TM, Botazzo Delbem AC, Monteiro DR. Iron Oxide Nanoparticles for Biomedical Applications: A Perspective on Synthesis, Drugs, Antimicrobial Activity, and Toxicity. Antibiotics (Basel). 2018 Jun; 7(2): 46. DOI: 10.3390/antibiotics7020046 [DOI] [PubMed]
16. Wang F, Zhou H, Olademehin OP, Kim SJ, Tao P. Insights into Key Interactions between Vancomycin and Bacterial Cell Wall Structures. ACS Omega. 2018 Jan; 3(1): 37-45. DOI: 10.1021/acsomega.7b01483 [DOI] [PubMed]
17. Stogios PJ, Savchenko A. Molecular mechanisms of vancomycin resistance. Protein Sci. 2020 Mar; 29(3): 654-69. DOI: 10.1002/pro.3819 [DOI] [PubMed]
18. Faron ML, Ledeboer NA, Buchan BW. Resistance Mechanisms, Epidemiology, and Approaches to Screening for Vancomycin-Resistant Enterococcus in the Health Care Setting. J Clin Microbiol. 2016 Oct; 54(10): 2436-47. DOI: 10.1128/JCM.00211-16 [DOI] [PubMed]
19. Ayobami O, Willrich N, Reuss A, Eckmanns T, Markwart R. The ongoing challenge of vancomycin-resistant Enterococcus faecium and Enterococcus faecalis in Europe: an epidemiological analysis of bloodstream infections. Emerg Microbes Infect. 2020 Dec; 9(1): 1180-93. DOI: 10.1080/22221751.2020.1769500 [DOI] [PubMed]
20. Griffin JH, Linsell MS, Nodwell MB, Chen Q, Pace JL, Quast KL, et al. Multivalent drug design. Synthesis and in vitro analysis of an array of vancomycin dimers. J Am Chem Soc. 2003 May; 125(21): 6517-31. DOI: 10.1021/ja021273s [DOI] [PubMed]
21. Regiel-Futyra A, Dąbrowski J, Mazuryk O, Spiewak K, Kyzioł A, Pucelik B, et al. Bioinorganic antimicrobial strategies in the resistance era. Coord Chem Rev. 2017; 351: 76-117. DOI: 10.1016/J.CCR.2017.05.005 [Article] [DOI]
22. Hemeg HA. Nanomaterials for alternative antibacterial therapy. Int J Nanomedicine. 2017 Nov; 12: 8211-25. DOI: 10.2147/IJN.S132163 [DOI] [PubMed]
23. Aderibigbe BA. Metal-Based Nanoparticles for the Treatment of Infectious Diseases. Molecules. 2017 Aug; 22(8): 1370. DOI: 10.3390/molecules22081370 [DOI] [PubMed]
24. Das K, Tiwari RKS, Shrivastava DK. Techniques for evaluation of medicinal plant products as antimicrobial agent: Current methods and future trends. J Med Plant Res. 2010 Jan; 4(2): 104-11. DOI: 10.5897/JMPR09.030 [View at Publisher] [DOI]
25. Helmerhorst EJ, Reijnders IM, van 't Hof W, Veerman EC, Nieuw Amerongen AV. A critical comparison of the hemolytic and fungicidal activities of cationic antimicrobial peptides. FEBS Lett. 1999 Apr; 449(2-3): 105-10. DOI: 10.1016/s0014-5793(99)00411-1 [DOI] [PubMed]


XML   Persian Abstract   Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 23, Issue 4 (Winter 2022) Back to browse issues page