:: دوره 22، شماره 2 - ( تابستان 1399 ) ::
جلد 22 شماره 2 صفحات 39-34 برگشت به فهرست نسخه ها
اثر نانوکیتین بر میزان جذب بافتی استات سرب در کبد موش‌های صحرایی
اعظم خزاعی پور1 ، سمیه نمرودی 2، شهره تازیکی3
1- کارشناس ارشد محیط زیست – زیستگاه‌ها و تنوع زیستی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
2- استادیار محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران ، namroodi@gau.ac.ir
3- استادیار، گروه فارماکولوژی، دانشگاه علوم پزشکی گلستان، گرگان، ایران
چکیده:   (6162 مشاهده)

زمینه و هدف: سرب از سمی‌ترین آلاینده‌های محیط زیست بوده که برای جانوران از جمله انسان بسیار خطرناک است. لذا استفاده از ترکیبات مختلف چون نانوکیتین برای حذف سرب از محیط‌های آبی در سال‌های اخیر مورد توجه قرار گرفته است. این مطالعه به منظور تعیین اثر نانوکیتین بر میزان جذب بافتی استات سرب در کبد موش‌های صحرایی انجام شد.

روش بررسی: این مطالعه تجربی روی 15 سر موش صحرایی نژاد ویستار با وزن 150 تا 180 گرم و سن 8 تا 10 هفته انجام شد. حیوانات در سه گروه پنج تایی شامل گروه شاهد، گروه دریافت کننده سرب (50 mg/kg/bw) و گروه دریافت کننده سرب (50 mg/kg/bw) توام با نانوکیتین (1.6 mg/kg/bw) قرار گرفتند و به‌مدت 6 هفته گاواژ شدند. سپس بافت‌های کبد جدا و غلظت سرب با دستگاه جذب اتمی اندازه‌گیری شد. بافت‌های کبد برای رنگ‌آمیزی هماتوکسیلین - ائوزین آماده‌سازی و سپس به‌وسیله میکروسکوپ نوری بررسی شدند.

یافته‌ها: میانگین غلظت سرب در بافت کبد گروه شاهد، دریافت‌کننده سرب و دریافت‌کننده سرب توام با نانوکیتین به‌طور همزمان به ترتیب برابر با 0.45±8.01 ، 4.73±45.41 ، 0.83±17.06 میکروگرم بر گرم تعیین شد. غلظت کبدی سرب در گروه دریافت‌کننده سرب نسبت به گروه شاهد به‌طور معنی‌داری افزایش یافت (P<0.05). همچنین غلظت کبدی سرب در گروه دریافت‌کننده سرب توام با نانوکیتین نسبت به گروه دریافت‌کننده سرب به‌طور معنی‌داری کاهش یافت (P<0.05). مطالعات هیستوپاتولوژیک بیانگر کاهش ضایعات بافتی (دژنره شدن و نکروز هپاتوسیت‌های کبدی، پرخونی و احتقان شدید در بافت کبد) در گروه دریافت کننده سرب توام با نانوکیتین نسبت به گروه دریافت کننده سرب به تنهایی بود.

نتیجه‌گیری: نانوکیتین بدون داشتن اثرات منفی بر بافت کبد می‌تواند باعث افزایش حذف و مانع جذب فلز سرب در بافت کبد موش‌های صحرایی باشد

واژه‌های کلیدی: نانوکیتین، سرب، کبد، موش صحرایی
Article ID: Vol22-20
متن کامل [PDF 338 kb]   (9919 دریافت)    
نوع مطالعه: تحقيقي | موضوع مقاله: فارماكولوژي
فهرست منابع
1. Nwokocha CR, Younger-Coleman N, Nwokocha M, Owu DU, Iwuala M. Investigation of effects of time of measurement and modes of administration on cadmium accumulation in rat liver under some medicinal plants food supplemented diet. Pharmacognosy Res. 2014 Jul; 6(3): 240-45. DOI: 10.4103/0974-8490.132604
2. Nassiri M, Khaki A, Bazi P, Khaki A, Sahizadeh R, Sahizadeh A. [Ultra-Structure Study of Lead Acetate Cytotoxic Effects on Testis in Rabbit]. Armaghane Danesh. 2008; 13(1): 45-53. [Article in Persian]
3. Lee SH, Lee JS, Choi YJ, Kim JG. In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments. Chemosphere. 2009 Nov; 77(8): 1069-75. DOI: 10.1016/j.chemosphere.2009.08.056
4. Flora SJ, Pachauri V. Chelation in metal intoxication. Int J Environ Res Public Health. 2010 Jul; 7(7): 2745-88. DOI: 10.3390/ijerph7072745
5. Tan TS, Chin HY, Tsai ML, Liu CL. Structural alterations, pore generation, and deacetylation of α- and β-chitin submitted to steam explosion. Carbohydr Polym. 2015 May; 122: 321-28. DOI: 10.1016/j.carbpol.2015.01.016
6. Toiserkani H, Sadaghat F. [Chitin and Chitosan: Structure, Properties and Applications]. J Aqu Eco. 2013; 2(3): 40-26. [Article in Persian]
7. Jaafarzadeh N, Mengelizadeh N, Takdastan A, Heidari-Farsani M, Niknam N. Adsorption of Zn (II) from aqueous solution by using chitin extraction from crustaceous shell. J Adv Environ Health Res. 2014; 2(2): 110-19. DOI: 10.22102/JAEHR.2014.40151
8. Becker T, Schlaak M, Strasdeit H. Adsorption of nickel (II), zinc (II) and cadmium (II) by new chitosan derivatives. Reactive and Functional Polymers. 2000; 44(3): 289-98. https://doi.org/10.1016/S1381-5148(99)00104-2
9. Liu D, Li Z, Zhu Y, Li Z, Kumar R. Recycled chitosan nanofibril as an effective Cu(II), Pb(II) and Cd(II) ionic chelating agent: adsorption and desorption performance. Carbohydr Polym. 2014 Oct; 111: 469-76. DOI: 10.1016/j.carbpol.2014.04.018
10. Shokraei S, Rouhani A, Nazari M, Manafi S. [Chromium Elimination from Water by use of Iron Oxide Nanoparticles Absorbents]. Journal of Toloo-e-Behdasht. 2014; 13(3): 160-70. [Article in Persian]
11. Al-Attar AM. Antioxidant effect of vitamin E treatment on some heavy metals-induced renal and testicular injuries in male mice. Saudi J Biol Sci. 2011 Jan; 18(1): 63-72. DOI: 10.1016/j.sjbs.2010.10.004
12. Nadapdap TP, Lutan D, Arsyad KHM, Ilyas S. Influence of Chitosan from Shrimp Skin to Quality and Quantity of Sperm of Albino Rats after Administration of Lead. Andrology. 2014; 3: 114. DOI: 10.4172/2167-0250.1000114
13. Zarei K, Najafpour Gh, Sharifzadeh M. [Synthesis and Application of Nano-chitosan in Removal of Heavy Metals]. Thesis in Chemical. Faculty of Chemical Engineering. Babol Noshirvani University of Technology (BUT). 2012. [Persian]
14. Mokhtari M, Shariati M, Gashmardi N. [Effect of lead on thyroid hormones and liver enzymes in adult male rats]. Hormozgan Med J. 2007; 11(2): 115-20. [Article in Persian]
15. Alehi M, Fatahian S, Shahanipour K. [Effect of iron oxide Nanoparticles coated with chitosan on renal functional indeces in rats]. J Gorgan Univ Med Sci. 2017; 19(1): 14-19. [Article in Persian]
16. Marianti A, Anatiasara D, Ashar FF. Chitosan as chelating and protective agents from lead intoxication in rat. Biosaintifika: Journal of Biology & Biology Education. 2017; 9(1): 126-33. DOI: 10.15294/biosaintifika.v9i1.8943
17. Muzzarelli R, Muzzarelli C, Cosani A, Terbojevich M. 6-Oxychitins, novel hyaluronan-like regiospecifically carboxylated chitins. Carbohydrate Polymers. 1999; 39(4): 361-67. https://doi.org/10.1016/S0144-8617(99)00027-2
18. Anderson AC, Pueschel SM, Linakis JG. Pathophysiology of Lead Poisoning. In: Pueschel SM, Linakis JG, Anderson AC. Lead Poisoning in Childhood. Baltimore: Brookes. 1996; pp: 75-96.
19. Bellinger D, Dietrich KN. Low-level lead exposure and cognitive function in children. Pediatric Annals. 1994; 23(11): 600-605. https://doi.org/10.3928/0090-4481-19941101-08
20. Popova M, Popov CS. Effect of heavy metal salts on the activity of rat liver and kidney catalase and lysosomal hydrolases. J Vet Med A. 1998; 45(1-10): 343-51. https://doi.org/10.1111/j.1439-0442.1998.tb00837.x
21. Massó EL, Corredor L, Antonio MT. Oxidative damage in liver after perinatal intoxication with lead and/or cadmium. J Trace Elem Med Biol. 2007; 21(3): 210-16. DOI: 10.1016/j.jtemb.2007.03.002
22. Nehru B, Kaushal S. Alterations in the hepatic enzymes following experimental lead poisoning. Biol Trace Elem Res. 1993 Jul; 38(1): 27-34. DOI: 10.1007/BF02783979
23. Struzyńska L, Dabrowska-Bouta B, Rafałowska U. Acute lead toxicity and energy metabolism in rat brain synaptosomes. Acta Neurobiol Exp (Wars). 1997; 57(4): 275-81.
24. Zahedi A, Khaki A, Bazi P, Khaki A. [The Hepato Toxic Effects of Lead Acetate on Hepatic Tissues in New Zealand Ian Rabbit]. J Guilan Univ Med Sci. 2009; 18(1): 17-24. [Article in Persian]
25. Wang Z, Yan Y, Yu X, Li W, Li B, Qin C. Protective effects of chitosan and its water-soluble derivatives against lead-induced oxidative stress in mice. Int J Biol Macromol. 2016 Feb; 83: 442-49. DOI: 10.1016/j.ijbiomac.2015.10.017
26. Levitskaia TG, Creim JA, Curry TL, Luders T, Morris JE, Sinkov SI, et al. Investigation of chitosan for decorporation of 60Co in the rat. Health Phys. 2009 Aug; 97(2): 115-24. DOI: 10.1097/01.HP.0000346798.82764.d7
27. Abdel-Gawad EI, Awwad SA. In-vivo and in-vitro prediction of the efficiency of nano-synthesized material in removal of lead nitrate toxicity. J Am Sci. 2011; 7(1): 105-19.


XML   English Abstract   Print



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 22، شماره 2 - ( تابستان 1399 ) برگشت به فهرست نسخه ها