:: دوره 22، شماره 1 - ( بهار 1399 ) ::
جلد 22 شماره 1 صفحات 42-35 برگشت به فهرست نسخه ها
اثر کروسین بر تغییرات بافتی هیپوکامپ و اختلال حافظه القا شده به وسیله اسکوپولامین در موش‌های صحرایی نر
حمیدرضا ثامنی1 ، افسانه طالبیان2 ، عباسعلی وفایی3 ، سام زربخش1 ، زهرا یعقوبی4 ، محمدرضا الداغی 5
1- دانشیار، مرکز تحقیقات سلول‌های بنیادی سیستم عصبی و گروه علوم تشریحی، دانشکده پزشکی، دانشگاه علوم پزشکی سمنان، سمنان، ایران
2- کارشناس ارشد رشته علوم تشریحی، مرکز تحقیقات سلول‌های بنیادی سیستم عصبی و گروه علوم تشریحی، دانشکده پزشکی، دانشگاه علوم پزشکی سمنان، سمنان، ایران
3- استاد، مرکز تحقیقات و گروه فیزیولوژی، دانشکده پزشکی، دانشگاه علوم پزشکی سمنان، سمنان، ایران
4- پزشک عمومی، مرکز تحقیقات و گروه فیزیولوژی، دانشکده پزشکی، دانشگاه علوم پزشکی سمنان، سمنان، ایران
5- استادیار، مرکز تحقیقات سلول‌های بنیادی سیستم عصبی و گروه علوم تشریحی، دانشکده پزشکی، دانشگاه علوم پزشکی سمنان، سمنان، ایران ، aldaghimr861@semums.ac.ir
چکیده:   (6362 مشاهده)

زمینه و هدف: آلزایمر شایع‌ترین شکل فراموشی در افراد مسن است. استرس اکسیداتیو یکی از عوامل پاتولوژیک مهم در بیماری آلزایمر است. این مطالعه به منظور تعیین اثر کروسین بر تغییرات بافتی هیپوکامپ و اختلال حافظه القا شده به وسیله اسکوپولامین در موش‌های صحرایی نر انجام گردید.

روش بررسی: در این مطالعه تجربی 30 سر موش صحرایی نر به‌صورت تصادفی به 3 گروه 10 تایی کنترل، دریافت کننده اسکوپولامین و دریافت کننده اسکوپولامین همراه با کروسین تقسیم شدند. اسکوپولامین با دوز mg/kg/bw3 به مدت یک هفته و کروسین با دوز mg/kg/bw30 به مدت دو هفته به صورت داخل صفاقی تزریق گردید. پس از آن شاخصه‌های یادگیری و حافظه فضایی با استفاده از ماز آبی موریس ارزیابی گردید. سپس موش‌ها قربانی شده و بلافاصله هیپوکمپ آنها خارج و ارزیابی بافت‌شناسی انجام شد.

یافته‌ها: تزریق اسکوپولامین سبب افزایش معنی‌دار تعداد سلول‌های تیره در ناحیه CA1 هیپوکمپ نسبت به گروه کنترل گردید. (P<0.05). درمان با کروسین منجر به کاهش تعداد سلول‌های تیره و افزایش سلول‌های روشن در ناحیه CA1 هیپوکمپ گردید (P<0.05). همچنین درمان با کروسین اختلال حافظه القا شده به‌وسیله اسکوپولامین را در موش‌های صحرایی کاهش داد (P<0.05).

نتیجه‌گیری: به‌نظر می‌رسد درمان با کروسین می‌تواند اثر محافظتی در برابر آسیب نورونی ناحیه CA1 هیپوکمپ و اختلال حافظه القا شده توسط اسکوپولامین داشته باشد.

واژه‌های کلیدی: بیماری آلزایمر، اسکوپولامین هیدروبروماید، حافظه فضایی، کروسین، موش صحرایی
Article ID: Vol22-05
متن کامل [PDF 446 kb]   (12041 دریافت)    
نوع مطالعه: تحقيقي | موضوع مقاله: فیزیولوژی - فارماکولوژی
فهرست منابع
1. El-Khadragy MF, Al-Olayan EM, Abdel Moneim AE. Neuroprotective effects of Citrus reticulata in scopolamine-induced dementia oxidative stress in rats. CNS Neurol Disord Drug Targets. 2014;13(4): 684-90.
2. Granic I, Dolga AM, Nijholt IM, van Dijk G, Eisel UL. Inflammation and NF-kappaB in Alzheimer's disease and diabetes. J Alzheimers Dis. 2009; 16(4): 809-21. doi: 10.3233/JAD-2009-0976
3. Mandrekar-Colucci S, Landreth GE. Microglia and inflammation in Alzheimer's disease. CNS Neurol Disord Drug Targets. 2010 Apr; 9(2): 156-67.
4. Müller T, Meyer HE, Egensperger R, Marcus K. The amyloid precursor protein intracellular domain (AICD) as modulator of gene expression, apoptosis, and cytoskeletal dynamics-relevance for Alzheimer's disease. Prog Neurobiol. 2008 Aug; 85(4): 393-406. doi: 10.1016/j.pneurobio.2008.05.002
5. Šalković-Petrišić M. Amyloid cascade hypothesis: is it true for sporadic Alzheimer’s disease. Periodicum Biologorum. 2008; 110(1): 17-25.
6. Weerateerangkull P, Praputpittaya C, Banjerdpongchai R. Effects of Ascorbic acid on streptozotocin-induced oxidative stress and memory impairment in rats. Thai Journal of Physiological Sciences. 2008; 20(2): 54-61.
7. Howes MJ, Perry NS, Houghton PJ. Plants with traditional uses and activities, relevant to the management of Alzheimer's disease and other cognitive disorders. Phytother Res. 2003 Jan; 17(1): 1-18. doi: 10.1002/ptr.1280
8. HOU XQ, WU DW, ZHANG CX, YAN R, YANG C, RONG CP, et al. Bushen Yizhi formula ameliorates cognition deficits and attenuates oxidative stress related neuronal apoptosis in scopolamine - induced senescence in mice. Int J Mol Med. 2014 Aug; 34(2): 429-39. doi: 10.3892/ijmm.2014.1801
9. Azami N, piri M, Jahanshahi M, oryan S, Babapour V, zarrindast M R. The role of CA1 α-adrenoceptor on scopolamine induced memory impairment in male rats. Physiol Pharmacol. 2010; 14(1): 66-77.
10. Jahanshahi M, Nickmahzar EG, Babakordi F. Effect of Gingko biloba extract on scopolamine-induced apoptosis in the hippocampus of rats. Anat Sci Int. 2013 Sep; 88(4): 217-22. doi: 10.1007/s12565-013-0188-8
11. Eskandary A, Moazedi AA, Najaphzadevarzi H, Akhond MR. [Effect of donepezil hydrochloride on reference and working memory impairment after bilateral electrical lesion of nucleus basalis magnocellularis in rats model of Alzheimer disease]. J Gorgan Univ Med Sci. 2018; 20(1): 36-42. [Article in Persian]
12. Zamani N, Moazedi AA, Afarinesh Khaki MR, Pourmehdi Boroujeni M. [Effect of memantine on spatial learning and memory in electrical leisions model of nucleus basalis magnocellularis: animal model of Alzheimer’s disease]. J Gorgan Univ Med Sci. 2018; 20(1): 43-50. [Article in Persian]
13. Farbood Y, Sarkaki AR, Shahrani Korrani M, Saadatfard M. [Effect of grape seed extract on improving memory and learning impairment induced by streptozotocin in male rat]. J Gorgan Uni Med Sci. 2016; 18(2): 27-34. [Article in Persian]
14. Christodoulou E, Kadoglou NP, Kostomitsopoulos N, Valsami G. Saffron: a natural product with potential pharmaceutical applications. J Pharm Pharmacol. 2015 Dec; 67(12): 1634-49. doi: 10.1111/jphp.12456
15. Samarghandian S, Shoshtari ME, Sargolzaei J, Hossinimoghadam H, Farahzad JA. Anti-tumor activity of safranal against neuroblastoma cells. Pharmacogn Mag. 2014 Apr; 10(Suppl 2): S419-24. doi: 10.4103/0973-1296.133296
16. Abdullaev FI. Cancer chemopreventive and tumoricidal properties of saffron (Crocus sativus L.). Exp Biol Med (Maywood). 2002 Jan; 227(1): 20-25.
17. Abdullaev FI, Riverón-Negrete L, Caballero-Ortega H, Manuel Hernández J, Pérez-López I, Pereda-Miranda R, et al. Use of in vitro assays to assess the potential antigenotoxic and cytotoxic effects of saffron (Crocus sativus L.). Toxicol In Vitro. 2003 Oct-Dec; 17(5-6): 731-36.
18. Khazdair MR, Boskabady MH, Hosseini M, Rezaee R, Tsatsakis AM. The effects of Crocus sativus (saffron) and its constituents on nervous system: A review. Avicenna J Phytomed. 2015 Sep-Oct; 5(5): 376-91.
19. He SY, Qian ZY, Tang FT, Wen N, Xu GL, Sheng L. Effect of crocin on experimental atherosclerosis in quails and its mechanisms. Life Sci. 2005 Jul; 77(8): 907-21. doi: 10.1016/j.lfs.2005.02.006
20. Lee IA, Lee JH, Baek NI, Kim DH. Antihyperlipidemic effect of crocin isolated from the fructus of Gardenia jasminoides and its metabolite Crocetin. Biol Pharm Bull. 2005 Nov; 28(11): 2106-10.
21. Martin G, Goh E, Neff AW. Evaluation of the developmental toxicity of crocetin on Xenopus. Food Chem Toxicol. 2002 Jul; 40(7): 959-64.
22. Abe K, Saito H. Effects of saffron extract and its constituent crocin on learning behaviour and long-term potentiation. Phytother Res. 2000 May; 14(3): 149-52.
23. Ghadami M R, Pourmotabbed A. The effect of Crocin on scopolamine induced spatial learning and memory deficits in rats. Physiol Pharmacol. 2009; 12(4): 287-95.
24. Ghotbeddin Z, Fatemi-Tabatabaei SR, Tabandeh MR, Mirzabeigi M, Badripour N, Amiri R. [Effect of crocin on inhibitory avoidance memory, balance and explorative behaviours following cisplatin administration in rat]. Feyz. 2017; 21(2): 118-25. [Article in Persian]
25. Finley JW, Gao S. A Perspective on Crocus sativus L. (Saffron) Constituent Crocin: A Potent Water-Soluble Antioxidant and Potential Therapy for Alzheimer's Disease. J Agric Food Chem. 2017 Feb; 65(5): 1005-20. doi: 10.1021/acs.jafc.6b04398
26. Tamaddonfard E, Farshid AA, Asri-Rezaee S, Javadi S, Khosravi V, Mirfakhraee Z. Crocin Improved Learning and Memory Impairments in Streptozotocin-Induced Diabetic Rats. Iran J Basic Med Sci. 2013 Jan; 16(1): 91-100.
27. Ghadrdoost B, Vafaei AA, Rashidy-Pour A, Hajisoltani R, Bandegi AR, Motamedi F, et al. Protective effects of saffron extract and its active constituent crocin against oxidative stress and spatial learning and memory deficits induced by chronic stress in rats. Eur J Pharmacol. 2011 Sep; 667(1-3): 222-29. doi: 10.1016/j.ejphar.2011.05.012
28. Khalili M, Hamzeh F. Effects of active constituents of Crocus sativus L., crocin on streptozocin-induced model of sporadic Alzheimer's disease in male rats. Iran Biomed J. 2010 Jan-Apr; 14(1-2): 59-65.
29. D'Hooge R, De Deyn PP. Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev. 2001 Aug; 36(1): 60-90.
30. Bagheri-Abassi F, Alavi H, Mohammadipour A, Motejaded F, Ebrahimzadeh-Bideskan A. The effect of silver nanoparticles on apoptosis and dark neuron production in rat hippocampus. Iran J Basic Med Sci. 2015 Jul; 18(7): 644-48.
31. Ling EA, Paterson JA, Privat A, Mori S, Leblond CP. Investigation of glial cells in semithin sections. I. Identification of glial cells in the brain of young rats. J Comp Neurol. 1973 May; 149(1): 43-71. doi: 10.1002/cne.901490104
32. Narayanan SN, Kumar RS, Potu BK, Nayak S, Bhat PG, Mailankot M. Effect of radio-frequency electromagnetic radiations (RF-EMR) on passive avoidance behaviour and hippocampal morphology in Wistar rats. Ups J Med Sci. 2010 May; 115(2): 91-6. doi: 10.3109/03009730903552661
33. KAFA IM, ARI I, KURT, MA. Morphometric Investigation of Neurons in the Hippocampal CA1, CA3 Areas and Dentate Gyrus in a Rat Model of Sepsis. Int J Morphol. 2010; 28(1): 183-92. http://dx.doi.org/10.4067/S0717-95022010000100026
34. Alizamir T, Akbari M, Mokhtari T, khaksarian M, Hassanzadeh G. Associated functional motor recovery induced by Intracerebroventricular (ICV) microinjection of Wharton’s jelly mesenchymal stem cells following brain ischemia/reperfusion injury in rat: Decreased dark neurons and Bax gene expression in the cerebral cortex. J Contemp Med Sci. 2017; 3(12): 319-25.
35. Futatsugi A, Kato K, Ogura H, Li ST, Nagata E, Kuwajima G, et al. Facilitation of NMDAR-independent LTP and spatial learning in mutant mice lacking ryanodine receptor type 3. Neuron. 1999 Nov; 24(3): 701-13.
36. Doyère V, Burette F, Negro CR, Laroche S. Long-term potentiation of hippocampal afferents and efferents to prefrontal cortex: implications for associative learning. Neuropsychologia. 1993 Oct; 31(10): 1031-53.
37. Pitsikas N, Sakellaridis N. Crocus sativus L. extracts antagonize memory impairments in different behavioural tasks in the rat. Behav Brain Res. 2006 Oct; 173(1): 112-15. doi: 10.1016/j.bbr.2006.06.005
38. Pitsikas N, Zisopoulou S, Tarantilis PA, Kanakis CD, Polissiou MG, Sakellaridis N. Effects of the active constituents of Crocus sativus L., crocins on recognition and spatial rats' memory. Behav Brain Res. 2007 Nov; 183(2): 141-46. doi: 10.1016/j.bbr.2007.06.001
39. Zheng YQ, Liu JX, Wang JN, Xu L. Effects of crocin on reperfusion-induced oxidative/nitrative injury to cerebral microvessels after global cerebral ischemia. Brain Res. 2007 Mar; 1138: 86-94. doi: 10.1016/j.brainres.2006.12.064
40. Ochiai T, Shimeno H, Mishima K, Iwasaki K, Fujiwara M, Tanaka H, et al. Protective effects of carotenoids from saffron on neuronal injury in vitro and in vivo. Biochim Biophys Acta. 2007 Apr; 1770(4): 578-84. doi: 10.1016/j.bbagen.2006.11.012
41. Shahabadi MM, Mousavi SZ, Mousavi SE, Ezzati HM. Crocin Affects Passive Avoidance Memory Following Formaldehyde-Induced Neurotoxicity in a Rat Model. Adv J Toxicol Curr Res. 2017; 1(1): 15-22.
42. Rajaei Z, Hosseini M, Alaei H. Effects of crocin on brain oxidative damage and aversive memory in a 6-OHDA model of Parkinson's disease. Arq Neuropsiquiatr. 2016 Sep; 74(9): 723-29. doi: 10.1590/0004-282X20160131
43. Chen Y, Zhang H, Tian X, Zhao C, Cai L, Liu Y et al. Antioxidant potential of crocins and ethanol extracts of Gardenia jasminoides Ellis and Crocus sativus L.:a relationship investigation between antioxidant activity and crocin contents. Food Chemistry. 2008; 109(3): 484-92. https://doi.org/10.1016/j.foodchem.2007.09.080
44. Nam KN, Park YM, Jung HJ, Lee JY, Min BD, Park SU, et al. Anti-inflammatory effects of crocin and crocetin in rat brain microglial cells. Eur J Pharmacol. 2010 Dec; 648(1-3): 110-16. doi: 10.1016/j.ejphar.2010.09.003
45. Zhang GF, Zhang Y, Zhao G. Crocin protects PC12 cells against MPP(+)-induced injury through inhibition of mitochondrial dysfunction and ER stress. Neurochem Int. 2015 Oct; 89: 101-10. doi: 10.1016/j.neuint.2015.07.011


XML   English Abstract   Print



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 22، شماره 1 - ( بهار 1399 ) برگشت به فهرست نسخه ها