[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Indexing Sources::
Editorial Board::
Executive Members::
Articles Archive::
Instruction to Authors::
Peer-Review::
Contact Us::
Site Facilities::
::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
:: Volume 19, Issue 4 (12-2017) ::
J Gorgan Univ Med Sci 2017, 19(4): 1-7 Back to browse issues page
Protective effect of levothyroxine with oxidative stress reduction mechanism in ischemic preconditioning model in rat heart
Masoumeh Tajik1 , Vahid Khori2 , Abdoljalal Marjani3 , Shohreh Taziki4 , Mohammad Ali Zeyghami5 , Azad Reza Mansourian 6
1- M.A in Biochemistry, Ishemia Research Center, Department of Pharmacology, Golestan University of Medical Sciences, Gorgan, Iran
2- Professor, Ishemia Research Center, Department of Pharmacology, Golestan University of Medical Sciences, Gorgan, Iran
3- Professor, Metabolic Disorder Research Center, Department of Biochemistry, Golestan University of Medical Sciences, Gorgan, Iran
4- Assistant Professor, Department of Pharmacology, Golestan University of Medical Sciences, Gorgan, Iran
5- M.A in Biochemistry, Laboratory Expert, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
6- Professor, Metabolic Disorder Research Center, Department of Biochemistry, Golestan University of Medical Sciences, Gorgan, Iran , azad_r_mansourian@yahoo.com
Abstract:   (9246 Views)
Background and Objective: A brief and short duration episode of ischemia is recorded in ischemic preconditioning (IPC). This latter condition provides a status in which large region of heart is protected when prolonged ischemia occurred. Levothyroxine play a protective role in IPC induction, and simultaneously with stress oxidative. This study was conducted to determine the protective effect of levothyroxine with oxidative stress reduction mechanism in ischemic preconditioning model in rat heart.
Methods: This experimental study was performed on 30 male Wistar rats in three groups of 10, as follows. In the reperfusion ischaemia group (IR), the heart of the animal was placed in a Langendorff apparatus. In the ischemic preconditioning group (IPC), prior to major ischemia, was exposed to 4 periods of 5-minute ischemia with reperfusion. In the intraperitoneally administered group, levothyroxine at a dose of 25 microgram per 100 g of body weight, the heart was exposed to reperfusion ischemia. The area of infarct and the level of malondialdehyde in the heart tissue were measured.
Results: The volume of Infarcted region in IR and IPC groups was 26.55 and 11.11 respectively. The same index for the Levothyroxine receiver was 12.56. Based on these findings it was demonstrated that Levothyroxine injection reduced the Infarcted region significantly similar with IPC (P<0.05). The MDA Levels in IR and IPC were 1328 and 777, respectively and in Levothyroxine group it was determined as 762. The size of Infarcted region in both IPC and treated with Levothyroxine groups significantly reduced in compared to IR group (P<0.05).
Conclusion: Injection of levothyroxine with ischemic preconditioning reduced the effect of reperfusion maladaptive ischemia in rat heart.
Keywords: Heart, Ischemia, Levothyroxine, Ischemic Preconditioning, Oxidative Stress
Full-Text [PDF 313 kb] [English Abstract]   (11795 Downloads) |   |   Abstract (HTML)  (697 Views)  
Type of Study: Original Articles | Subject: Physiology - Pharmacology
References
1. Balakumar P, Singh H, Singh M, Anand-Srivastava MB. The impairment of preconditioning-mediated cardioprotection in pathological conditions. Pharmacol Res. 2009 Jul; 60(1): 18-23. doi:10.1016/j.phrs.2009.03.002
2. Lesnefsky EJ, Chen Q, Tandler B, Hoppel CL. Mitochondrial dysfunction and myocardial ischemia-reperfusion: implications for novel therapies. Annu Rev Pharmacol Toxicol. 2017 Jan; 57: 535-65. doi:10.1146/annurev-pharmtox-010715-103335
3. Grace PA. Ischaemia-reperfusion injury. Br J Surg. 1994 May; 81(5): 637-47.
4. Suzuki M, Sasaki N, Miki T, Sakamoto N, Ohmoto-Sekine Y, Tamagawa M, et al. Role of sarcolemmal K ATP channels in cardioprotection against ischemia/reperfusion injury in mice. J Clin Invest. 2002 Feb; 109(4): 509-16. doi:10.1172/JCI14270
5. Bian JS, Yong QC, Pan TT, Feng ZN, Ali MY, Zhou S, et al. Role of hydrogen sulfide in the cardioprotection caused by ischemic preconditioning in the rat heart and cardiac myocytes. J Pharmacol Exp Ther. 2006 Feb; 316(2): 670-78. doi:10.1124/jpet.105.092023
6. Rousou AJ, Ericsson M, Federman M, Levitsky S, McCully JD. Opening of mitochondrial KATP channels enhances cardioprotection through the modulation of mitochondrial matrix volume, calcium accumulation, and respiration. Am J Physiol Heart Circ Physiol. 2004 Nov; 287(5): H1967-76.
7. Taliyan R, Singh M, Sharma PL, Yadav HN, Sidhu KS. Possible involvement of 1-adrenergic receptor and KATP channels in cardioprotective effect of remote aortic preconditioning in isolated rat heart. J Cardiovasc Dis Res. 2010 Jul-Sep; 1(3): 145-51. doi:10.4103/0975-3583.70917
8. Pantos CI, Malliopoulou VA, Mourouzis IS, Karamanoli EP, Paizis IA, Steimberg N, et al. Long-term thyroxine administration protects the heart in a pattern similar to ischemic preconditioning. Thyroid. 2002 Apr; 12(4): 325-29.
9. Uchiyama Y, Otani H, Wakeno M, Okada T, Uchiyama T, Sumida T, et al. Role of mitochondrial KATP channels and protein kinase C in ischaemic preconditioning. Clinical and experimental pharmacology and physiology. 2003 May; 30(5-6): 426-36. doi:10.1046/j.1440-1681.2003.03853.x
10. Oziol L, Faure P, Vergely C, Rochette L, Artur Y, Chomard P, et al. In vitro free radical scavenging capacity of thyroid hormones and structural analogues. J Endocrinol. 2001 Jul; 170(1): 197-206.
11. Sayre NL, Sifuentes M, Holstein D, Cheng SY, Zhu X, Lechleiter JD. Stimulation of astrocyte fatty acid oxidation by thyroid hormone is protective against ischemic stroke-induced damage. J Cereb Blood Flow Metab. 2017 Feb; 37(2):514-27. doi:10.1177/0271678X16629153
12. Pantos CI, Malliopoulou VA, Mourouzis IS, Karamanoli EP, Tzeis SM, Carageorgiou HC, et al. Long-term thyroxine administration increases heat stress protein-70 mRNA expression and attenuates p38 MAP kinase activity in response to ischaemia. J Endocrinol. 2001 Jul; 170(1): 207-15.
13. Marais E, Genade S, Huisamen B, Strijdom J, Moolman J, Lochner A. Activation of 938 MAPK induced by a multi-cycle ischaemic preconditioning protocol is associated with attenuated p38 MAPK activity during sustained ischaemia and reperfusion. J Mol Cell Cardiol. 2001; 33(4): 769-78.
14. McCord JM. Human disease, free radicals, and the oxidant/antioxidant balance. Clin Biochem. 1993 Oct; 26(5): 351-57.
15. Katoh H, Nishigaki N, Hayashi H. Diazoxide opens the mitochondrial permeability transition pore and alters Ca2+ transients in rat ventricular myocytes. Circulation. 2002 Jun; 105(22): 2666-71.
16. Liang Y, Kongstad O, Luo J, Liao Q, Holm M, Olsson B, Yuan S. QT dispersion failed to estimate the global dispersion of ventricular repolarization measured using monophasic action potential mapping technique in swine and patients. J Electrocardiol. 2005 Jan; 38(1): 19-27. doi:10.1016/j.jelectrocard.2004.09.012
17. Eckle T, Grenz T, Köhler D, Redel A, Falk M, Rolauffs B, et al. Systematic evaluation of a novel model for cardiac ischemic preconditioning in mice. Am J Physiol Heart Circ Physiol. 2006 Nov; 291(5): H2533-H2540. doi:10.1152/ajpheart.00472.2006
18. Alizadeh AM, Faghihi M, Sadeghipour HR, Mohammadghasemi F, Khori V. Role of endogenous oxytocin in cardiac ischemic preconditioning. Regul Pept. 2011 Feb; 167(1): 86-90. doi:10.1016/j.regpep.2010.11.004
19. Placer ZA, Cushman LL, Johnson BC. Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal Biochem. 1966 Aug; 16(2): 359-64.
20. Schulz R, Cohen MV, Behrends M, Downey JM, Heusch G. Signal transduction of ischemic preconditioning. Cardiovasc Res. 2001 Nov; 52(2): 181-98.
21. Lin HY, Glinsky GV, Mousa SA, Davis PJ. Thyroid hormone and anti-apoptosis in tumor cells. Oncotarget. 2015 Jun; 6(17): 14735-43.
22. Pantos C, Mourouzis I, Saranteas T, Clavé G, Ligeret H, Noack-Fraissignes P, et al. Thyroid hormone improves postischaemic recovery of function while limiting apoptosis: a new therapeutic approach to support hemodynamics in the setting of ischaemia-reperfusion? Basic Res Cardiol. 2009 Jan; 104(1): 69-77. doi:10.1007/s00395-008-0758-4
23. Yang X, Cohen MV, Downey JM. Mechanism of cardioprotection by early ischemic preconditioning. Cardiovasc Drugs Ther. 2010 Jun; 24(3): 225-34. doi:10.1007/s10557-010-6236-x
24. Heusch G, Boengler K, Schulz R. Inhibition of mitochondrial permeability transition pore opening: the Holy Grail of cardioprotection. Basic Res Cardiol. 2010 Mar; 105(2): 151-54. doi:10.1007/s00395-009-0080-9
25. Zhang X, Xiao Z, Yao J, Zhao G, Fa X, Niu J. Participation of protein kinase C in the activation of Nrf2 signaling by ischemic preconditioning in the isolated rabbit heart. Mol Cell Biochem. 2013 Jan; 372(1-2): 169-79. doi:10.1007/s11010-012-1458-9
26. Costa AD, Garlid KD. Intramitochondrial signaling: interactions among mitoKATP, PKCε, ROS, and MPT. Am J Physiol Heart Circ Physiol. 2008; 295(2): H874-H882. doi:10.1152/ajpheart.01189.2007
27. Javadov S, Karmazyn M. Mitochondrial permeability transition pore opening as an endpoint to initiate cell death and as a putative target for cardioprotection. Cell Physiol Biochem. 2007; 20(1-4): 1-22. doi:10.1159/000103747
28. Niemann CU, Saeed M, Akbari H, Jacobsen W, Benet LZ, Christians U, et al. Close association between the reduction in myocardial energy metabolism and infarct size: dose-response assessment of cyclosporine. J Pharmacol Exp Ther. 2002 Sep; 302(3): 1123-8.
29. Kumar A, Taliyan R, Sharma PL. Evaluation of thyroid hormone induced pharmacological preconditioning on cardiomyocyte protection against ischemic-reperfusion injury. Indian J Pharmacol. 2012 Jan; 44(1): 68-72. doi:10.4103/0253-7613.91870
30. Aggarwal BB, Gupta SC, Sung B. Curcumin: an orally bioavailable blocker of TNF and other pro-inflammatory biomarkers. Br J Pharmacol. 2013 Aug; 169(8): 1672-92. doi:10.1111/bph.12131
31. Kanwal A, Nizami HL, Mallapudi S, Putcha UK, Mohan GK, Banerjee SK. Inhibition of SGLT1 abrogates preconditioning-induced cardioprotection against ischemia-reperfusion injury. Biochem Biophys Res Commun. 2016 Apr; 472(2): 392-98. doi:10.1016/j.bbrc.2016.02.016
32. Pantos C, Malliopoulou V, Mourouzis I, Thempeyioti A, Paizis I, Dimopoulos A, et al. Hyperthyroid hearts display a phenotype of cardioprotection against ischemic stress: a possible involvement of heat shock protein 70. Horm Metab Res. 2006 May; 38(5): 308-13. doi:10.1055/s-2006-925404
Send email to the article author


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tajik M, Khori V, Marjani A, Taziki S, Zeyghami M A, Mansourian A R. Protective effect of levothyroxine with oxidative stress reduction mechanism in ischemic preconditioning model in rat heart . J Gorgan Univ Med Sci 2017; 19 (4) :1-7
URL: http://goums.ac.ir/journal/article-1-3222-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 19, Issue 4 (12-2017) Back to browse issues page
مجله دانشگاه علوم پزشکی گرگان Journal of Gorgan University of Medical Sciences
Persian site map - English site map - Created in 0.05 seconds with 36 queries by YEKTAWEB 4645