[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Indexing Sources::
Editorial Board::
Executive Members::
Articles Archive::
Instruction to Authors::
Peer-Review::
Contact Us::
Site Facilities::
::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
:: Volume 19, Issue 1 (3-2017) ::
J Gorgan Univ Med Sci 2017, 19(1): 83-88 Back to browse issues page
Bioinformatics analysis to predict potential Micro-RNAs inhibiting processes of angiogenesis in cancer
F Toroghi 1, Y Toroghi2
1- M.Sc in Cell and Molecular Biology, Department of Drug Affairs- Bostanabad, Tabriz University of Medical Sciences, Bostanabad, Iran , fatoroghi@gmail.com
2- M.Sc in Parasitology, Tabriz University of Medical Sciences, Laboratory of Hashtrood, Hashtrood, Iran
Abstract:   (8982 Views)

Background and Objective: Tumor size results in hypoxic and acidic environment leading to the production of several types of growth factors required for the formation of blood vessels. Afterwards, metastasis of cancerous cells occurs via blood vessels. Therefore angiogenesis inhibition can be a new way of cancer treatment. This study was done to determine the bioinformatics analysis to predict potential Micro-RNAs inhibiting processes of angiogenesis in cancer.

Methods: In this descriptive study, micro-RNAs that are able to connect to MMP genes involved in tumor angiogenesis (MMP1-2-3-8-9-10-11-13) were detected using miRwalk database. Effective Micro-RNAs selection was based on the number of binding sites in 3'UTR genes. MicroRNA data base was used to find sample base pairing sequences.

Results: mir-1302, mir-516a, mir-512, mir-511, mir-516b and mir-548 were determined with the most number of binding sites in genes involved in angiogenesis.

Conclusion: MicroRNAs are worthy options for cell culture and laboratory examination in order to find new ways to prevent the development of cancer by angiogenesis inhibition.

Keywords: Bioinformatics, Angiogenesis, MMPs, MicroRNA
Full-Text [PDF 253 kb] [English Abstract]   (12889 Downloads) |   |   Abstract (HTML)  (879 Views)  
Type of Study: Original Articles | Subject: Genetic
References
1. Semenza GL. Vasculogenesis, angiogenesis, and arteriogenesis: mechanisms of blood vessel formation and remodeling. J Cell Biochem. 2007 Nov; 102(4): 840-7. doi:10.1002/jcb.21523
2. Egginton S. Invited review: activity-induced angiogenesis. Pflugers Arch. 2009 Mar; 457(5): 963-77. doi:10.1007/s00424-008-0563-9
3. Kamat A, Rajoria S, George A, Suriano R, Shanmugam A, Megwalu U, et al. Estrogen-mediated angiogenesis in thyroid tumor microenvironment is mediated through VEGF signaling pathways. Arch Otolaryngol Head Neck Surg. 2011 Nov; 137(11): 1146-53. doi:10.1001/archoto.2011.194
4. Baharara J, Zafar-Balanezhad S, Nejad-Shahrokhabadi K, Hesami Z. The effects of different doses of atorvastatin on angiogenesis of chorioallantoic membrane of chick embryo Journal of Shahrekord University of Medical Sciences. 2012; 14(2): 82-9. [Article in persian]
5. Le Bitoux MA, Stamenkovic I. Tumor-host interactions: the role of inflammation. Histochem Cell Biol. 2008 Dec; 130(6): 1079-90. doi:10.1007/s00418-008-0527-3
6. Fam NP, Verma S, Kutryk M, Stewart DJ. Clinician guide to angiogenesis. Circulation. 2003 Nov; 108(21): 2613-8. doi:10.1161/01.CIR.0000102939.04279.75
7. Kermorvant-Duchemin E, Pinel AC, Lavalette S, Lenne D, Raoul W, Calippe B, et al. Neonatal hyperglycemia inhibits angiogenesis and induces inflammation and neuronal degeneration in the retina. PLoS One. 2013 Nov; 8(11): e79545. doi:10.1371/journal.pone.0079545
8. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 1993 Apr; 362(6423): 841-4. doi:10.1038/362841a0
9. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 1993 Apr; 362(6423): 841-4. doi:10.1038/362841a0
10. Pandya NM, Dhalla NS, Santani DD. Angiogenesis-a new target for future therapy. Vascul Pharmacol. 2006 May; 44(5): 265-74. doi:10.1016/j.vph.2006.01.005
11. Pasquet M, Golzio M, Mery E, Rafii A, Benabbou N, Mirshahi P, et al. Hospicells (ascites-derived stromal cells) promote tumorigenicity and angiogenesis. Int J Cancer. 2010 May; 126(9): 2090-101. doi:10.1002/ijc.24886
12. Fang S, Wei J, Pentinmikko N, Leinonen H, Salven P. Generation of functional blood vessels from a single c-kit+ adult vascular endothelial stem cell. PLoS Biol. 2012; 10(10): e1001407. doi:10.1371/journal.pbio.1001407
13. Tayebe R, Baharara J. [A review on angiogenesis in tumor] Journal of Cell & Tissue. Spring 2014; 5(1): 89-100. [Article in Persian]
14. Kanellopoulou C, Monticelli S. A role for microRNAs in the development of the immune system and in the pathogenesis of cancer. Semin Cancer Biol. 2008 Apr; 18(2): 79-88. doi:10.1016/j.semcancer.2008.01.002
15. Kim M, Kasinski AL, Slack FJ. MicroRNA therapeutics in preclinical cancer models. Lancet Oncol. 2011 Apr; 12(4): 319-21. doi:10.1016/S1470-2045(11)70067-5
16. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 1993 Apr; 362(6423): 841-4. doi:10.1038/362841a0
17. Iyer RP, Patterson NL, Fields GB, Lindsey ML. The history of matrix metalloproteinases: milestones, myths, and misperceptions. Am J Physiol Heart Circ Physiol. 2012 Oct; 303(8): H919-30. doi:10.1152/ajpheart.00577.2012
18. Egeblad M1, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002 Mar; 2(3): 161-74. doi:10.1038/nrc745
19. Rundhaug JE. Matrix metalloproteinases and angiogenesis. J Cell Mol Med. 2005 Apr-Jun; 9(2): 267-85.
20. John A, Tuszynski G. The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathol Oncol Res. 2001; 7(1): 14-23.
21. Waugh DJ, Wilson C. The interleukin-8 pathway in cancer. Clin Cancer Res. 2008 Nov; 14(21): 6735-41. doi:10.1158/1078-0432.CCR-07-4843
22. Gabellini C, Trisciuoglio D, Desideri M, Candiloro A, Ragazzoni Y, Orlandi A, et al. Functional activity of CXCL8 receptors, CXCR1 and CXCR2, on human malignant melanoma progression. Eur J Cancer. 2009 Sep; 45(14): 2618-27. doi:10.1016/j.ejca.2009.07.007
23. Dweep H, Sticht C, Pandey P, Gretz N. miRWalk--database: prediction of possible miRNA binding sites by "walking" the genes of three genomes. J Biomed Inform. 2011 Oct; 44(5): 839-47. doi:10.1016/j.jbi.2011.05.002
24. Dweep H, Sticht C, Gretz N. In-Silico Algorithms for the Screening of Possible microRNA Binding Sites and Their Interactions. Current Genomics. 2013; 14(2): 127-36. doi:10.2174/1389202911314020005
25. Caldas C, Brenton JD. Sizing up miRNAs as cancer genes. Nat Med. 2005 Jul; 11(7): 712-4.
26. Meng F, Henson R, Lang M, Wehbe H, Maheshwari S, Mendell JT, et al. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology. 2006 Jun; 130(7): 2113-29.
Send email to the article author


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Toroghi F, Toroghi Y. Bioinformatics analysis to predict potential Micro-RNAs inhibiting processes of angiogenesis in cancer. J Gorgan Univ Med Sci 2017; 19 (1) :83-88
URL: http://goums.ac.ir/journal/article-1-3021-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 19, Issue 1 (3-2017) Back to browse issues page
مجله دانشگاه علوم پزشکی گرگان Journal of Gorgan University of Medical Sciences
Persian site map - English site map - Created in 0.04 seconds with 36 queries by YEKTAWEB 4645