[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Editorial Board::
Executive Members::
Instruction to Authors::
Peer Review::
Articles Archive::
Indexing Databases::
Contact Us::
Site Facilities::
::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
:: Volume 20, Issue 4 (12-2018) ::
J Gorgan Univ Med Sci 2018, 20(4): 1-8 Back to browse issues page
The effect of neurotrophic factors in multiple sclerosis treatment: A review
Nazem Ghasemi *
Assistant Professor, Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran , n_ghasemi@med.mui.ac.ir
Abstract:   (8237 Views)
Multiple sclerosis (MS) is a chronic and multiphasic autoimmune disease which affecting the nervous system. Recently, neurotrophic factor secreting cells have been proposed as one of the best sources for cell therapy in MS disease. Therefore, this review study was done with aimed to introduce neurotrophic factor secreting cells and the role of neurotrophic factors in the treatment of MS. The present study, based on the Systematic Review and using multiple sclerosis, neurotrophin and cell therapy keywords, 98 articles were searched from various databases including Pubmed, SID, Springer, SinceDirect Magiran, Web of Sciences and the Google Scholar. After removing irrelevant and repetitive articles, 50 articles were selected. The results of these studies showed that cell-based therapies in MS have been designed with the aim of replacing destroyed cells or with the goal of neuronal support using neural growth factors. Neurotrophic factors secreting cells with the ability to migrate to neurological lesions and secretion of neurotrophic factors can play a major role in supporting neural tissue and preventing its destruction. These factors, through tyrosine kinase receptors, have a variety of effects on the development and proper functioning of neurons. On conclusion, neurotrophic factor secreting cells due to the secretion of a wide range of neural growth factors which required for neural development might be one of the ideal cell sources for cell-based therapy in MS disease.
Keywords: Multiple sclerosis, Neurotrophins, Cell therapy
Full-Text [PDF 309 kb]   (16729 Downloads)    
Type of Study: Review Article | Subject: Neurosciences
References
1. Ghasemi N, Razavi S, Nikzad E. Multiple Sclerosis: Pathogenesis, Symptoms, Diagnoses and Cell-Based Therapy. Cell J. 2017 Apr-Jun; 19(1): 1-10.
2. Compston A, Coles A. Multiple sclerosis. Lancet. 2008 Oct; 372(9648): 1502-17. doi: 10.1016/S0140-6736(08)61620-7
3. Wade BJ. Spatial analysis of global prevalence of multiple sclerosis suggests need for an updated prevalence scale. Mult Scler Int. 2014; 2014: 124578. doi: 10.1155/2014/124578
4. Loma I, Heyman R. Multiple sclerosis: pathogenesis and treatment. Current Neuropharmacol. 2011 Sep; 9(3): 409-16. doi: 10.2174/157015911796557911
5. Lucas RM, Byrne SN, Correale J, Ilschner S, Hart PH. Ultraviolet radiation, vitamin D and multiple sclerosis. Neurodegener Dis Manag. 2015 Oct; 5(5): 413-24. doi: 10.2217/nmt.15.33
6. Briggs FB, Acuna B, Shen L, Ramsay P, Quach H, Bernstein A, et al. Smoking and risk of multiple sclerosis: evidence of modification by NAT1 variants. Epidemiology. 2014 Jul; 25(4): 605-14. doi: 10.1097/EDE.0000000000000089
7. Hewer S, Lucas R, van der Mei I, Taylor BV. Vitamin D and multiple sclerosis. J Clin Neurosci. 2013 May; 20(5): 634-41. doi: 10.1016/j.jocn.2012.10.005
8. Ascherio A, Munger KL. Epidemiology of multiple sclerosis: from risk factors to prevention-an update. Semin Neurol. 2016 Apr; 36(2): 103-14. doi: 10.1055/s-0036-1579693
9. Khan F, Turner-Stokes L, Ng L, Kilpatrick T. Multidisciplinary rehabilitation for adults with multiple sclerosis. Cochrane Database Syst Rev. 2007 Apr; (2): CD006036. doi: 10.1002/14651858.CD006036.pub2
10. Kasper LH, Shoemaker J. Multiple sclerosis immunology: The healthy immune system vs the MS immune system. Neurology. 2010 Jan; 74 Suppl 1: S2-8. doi: 10.1212/WNL.0b013e3181c97c8f
11. Mi S, Miller RH, Tang W, Lee X, Hu B, Wu W, et al. Promotion of central nervous system remyelination by induced differentiation of oligodendrocyte precursor cells. Ann Neurol. 2009 Mar; 65(3): 304-15. doi: 10.1002/ana.21581
12. Wu GF, Alvarez E. The immunopathophysiology of multiple sclerosis. Neurol Clin. 2011 May; 29(2): 257-78. doi: 10.1016/j.ncl.2010.12.009
13. Popescu BF, Pirko I, Lucchinetti CF. Pathology of multiple sclerosis: where do we stand? Continuum (Minneap Minn). 2013 Aug; 19(4): 901-21. doi: 10.1212/01.CON.0000433291.23091.65
14. Ghasemi N, Razavi S, Salehi H. [Improvement of myelin ultrastructure after transplantation of human adipose tissue-derived stem cell in rat multiple sclerosis model]. J Isfahan Med Sch. 2016; 33(366): 2333-40. [Article in Persian]
15. Yang J, Rostami A, Zhang GX. Cellular remyelinating therapy in multiple sclerosis. J Neurol Sci. 2009 Jan; 276(1-2): 1-5. doi: 10.1016/j.jns.2008.08.020
16. Sadan O, Bahat-Stromza M, Barhum Y, Levy YS, Pisnevsky A, Peretz H, et al. Protective effects of neurotrophic factor-secreting cells in a 6-OHDA rat model of Parkinson disease. Stem Cells Dev. 2009 Oct; 18(8): 1179-90. doi: 10.1089/scd.2008.0411
17. Sadan O, Shemesh N, Cohen Y, Melamed E, Offen D. Adult neurotrophic factor-secreting stem cells: a potential novel therapy for neurodegenerative diseases. Isr Med Assoc J. 2009 Apr; 11(4): 201-14.
18. Razavi S, Ghasemi N, Mardani M, Salehi H. Remyelination improvement after neurotrophic factors secreting cells transplantation in rat spinal cord injury. Iran J Basic Med Sci. 2017 Apr; 20(4): 392-98. doi: 10.22038/IJBMS.2017.8580
19. Razavi S, Nazem G, Mardani M, Esfandiari E, Salehi H, Esfahani SH. Neurotrophic factors and their effects in the treatment of multiple sclerosis. Adv Biomed Res. 2015 Feb; 4: 53. doi: 10.4103/2277-9175.151570
20. Keefe KM, Sheikh IS, Smith GM. Targeting neurotrophins to specific populations of neurons: NGF, BDNF, and NT-3 and Their relevance for treatment of spinal cord injury. Int J Mol Sci. 2017 Mar; 18(3). pii: E548. doi: 10.3390/ijms18030548
21. Hodgetts SI, Harvey AR. Neurotrophic factors used to treat spinal cord injury. Vitam Horm. 2017; 104: 405-57. doi: 10.1016/bs.vh.2016.11.007
22. Skaper SD. Nerve growth factor: a neuroimmune crosstalk mediator for all seasons. Immunology. 2017 May; 151(1): 1-15. doi: 10.1111/imm.12717
23. Acosta CM, Cortes C, MacPhee H, Namaka MP. Exploring the role of nerve growth factor in multiple sclerosis: implications in myelin repair. CNS Neurol Disord Drug Targets. 2013 Dec; 12(8): 1242-56.
24. Shen T, You Y, Joseph C, Mirzaei M, Klistorner A, Graham SL, et al. BDNF Polymorphism: A review of its diagnostic and clinical relevance in neurodegenerative disorders. Aging Dis. 2018 Jun; 9(3): 523-36. doi: 10.14336/AD.2017.0717
25. Lühder F, Gold R, Flügel A, Linker RA. Brain-derived neurotrophic factor in neuroimmunology: lessons learned from multiple sclerosis patients and experimental autoimmune encephalomyelitis models. Arch Immunol Ther Exp (Warsz). 2013 Apr; 61(2): 95-105. doi: 10.1007/s00005-012-0211-0
26. Hempstead BL. Brain-derived neurotrophic factor: three ligands, many actions. Trans Am Clin Climatol Assoc. 2015; 126: 9-19.
27. Leal G, Bramham CR, Duarte CB. BDNF and hippocampal synaptic plasticity. Vitam Horm. 2017; 104: 153-95. doi: 10.1016/bs.vh.2016.10.004
28. Mahurkar S, Suppiah V, O'Doherty C. Pharmacogenomics of interferon beta and glatiramer acetate response: a review of the literature. Autoimmun Rev. 2014 Feb; 13(2): 178-86. doi: 10.1016/j.autrev.2013.10.012
29. Bothwell M. NGF, BDNF, NT3, and NT4. Handb Exp Pharmacol. 2014; 220: 3-15. doi: 10.1007/978-3-642-45106-5_1
30. Popova NK, Ilchibaeva TV, Naumenko VS. Neurotrophic Factors (BDNF and GDNF) and the Serotonergic System of the Brain. Biochemistry (Mosc). 2017 Mar; 82(3): 308-17. doi: 10.1134/S0006297917030099
31. Ibáñez CF, Andressoo JO. Biology of GDNF and its receptors - relevance for disorders of the central nervous system. Neurobiol Dis. 2017 Jan; 97(Pt B): 80-89. doi: 10.1016/j.nbd.2016.01.021
32. Wang X. Structural studies of GDNF family ligands with their receptors-Insights into ligand recognition and activation of receptor tyrosine kinase RET. Biochim Biophys Acta. 2013 Oct; 1834(10): 2205-12. doi: 10.1016/j.bbapap.2012.10.008
33. Grondin R, Littrell OM, Zhang Z, Ai Y, Huettl P, Pomerleau F, et al. GDNF revisited: A novel mammalian cell-derived variant form of GDNF increases dopamine turnover and improves brain biodistribution. Neuropharmacology. 2018 May. pii: S0028-3908(18)30233-8. doi: 10.1016/j.neuropharm.2018.05.014
34. Hickey P, Stacy M. AAV2-neurturin (CERE-120) for Parkinson's disease. Expert Opin Biol Ther. 2013 Jan; 13(1): 137-45. doi: 10.1517/14712598.2013.754420
35. Xun G, Guo F, Li Z, Zhou Q. [Research advances of artemin]. Zhongguo Fei Ai Za Zhi. 2011 Oct; 14(10): 790-800. doi: 10.3779/j.issn.1009-3419.2011.10.05 [Article in Chinese]
36. Sidorova YA, Mätlik K, Paveliev M, Lindahl M, Piranen E, Milbrandt J, et al. Persephin signaling through GFRalpha1: the potential for the treatment of Parkinson's disease. Mol Cell Neurosci. 2010 Jul; 44(3): 223-32. doi: 10.1016/j.mcn.2010.03.009
37. Pasquin S, Sharma M, Gauchat JF. Cytokines of the LIF/CNTF family and metabolism. Cytokine. 2016 Jun; 82: 122-24. doi: 10.1016/j.cyto.2015.12.019
38. Pasquin S, Sharma M, Gauchat JF. Ciliary neurotrophic factor (CNTF): New facets of an old molecule for treating neurodegenerative and metabolic syndrome pathologies. Cytokine Growth Factor Rev. 2015 Oct; 26(5): 507-15. doi: 10.1016/j.cytogfr.2015.07.007
39. Nicola NA, Babon JJ. Leukemia inhibitory factor (LIF). Cytokine Growth Factor Rev. 2015 Oct; 26(5): 533-44. doi: 10.1016/j.cytogfr.2015.07.001
40. Ghasemi N, Razavi S, Mardani M, Esfandiari E, Salehi H, Zarkesh Esfahani SH. Transplantation of human adipose-derived stem cells enhances remyelination in lysolecithin-induced focal demyelination of rat spinal cord. Mol Biotechnol. 2014 May; 56(5): 470-78. doi: 10.1007/s12033-014-9744-2
41. Wang X, Kimbrel EA, Ijichi K, Paul D, Lazorchak AS, Chu J, et al. Human ESC-derived MSCs outperform bone marrow MSCs in the treatment of an EAE model of multiple sclerosis. Stem Cell Reports. 2014 Jun; 3(1):115-30. doi: 10.1016/j.stemcr.2014.04.020
42. Chun HJ, Kim YS, Kim BK, Kim EH, Kim JH, Do BR, et al. Transplantation of human adipose-derived stem cells in a rabbit model of traumatic degeneration of lumbar discs. World Neurosurg. 2012 Sep-Oct; 78(3-4): 364-71. doi: 10.1016/j.wneu.2011.12.084
43. Trubiani O, Giacoppo S, Ballerini P, Diomede F, Piattelli A, Bramanti P, et al. Alternative source of stem cells derived from human periodontal ligament: a new treatment for experimental autoimmune encephalomyelitis. Stem Cell Res Ther. 2016; 7: 1. doi: 10.1186/s13287-015-0253-4
44. Shroff G. A review on stem cell therapy for multiple sclerosis: special focus on human embryonic stem cells. Stem Cells Cloning. 2018; 11: 1-11. doi: 10.2147/SCCAA.S135415
45. Muraro PA, Martin R, Mancardi GL, Nicholas R, Sormani MP, Saccardi R. Autologous haematopoietic stem cell transplantation for treatment of multiple sclerosis. Nat Rev Neurol. 2017 Jul; 13(7): 391-405. doi: 10.1038/nrneurol.2017.81
46. Ghasemi N and Razavi S. Transdifferentiation potential of adipose-derived stem cells into neural lineage and their application. J Histol Histopathol. 2014; 1: 12. http://dx.doi.org/10.7243/2055-091X-1-12
47. Ghasemi N. Therapeutic effects of adipose derived mesenchymal stem cells on remyelination process in inflammatory demyelinating diseases. J Histol Histopathol. 2015; 2: 8. http://dx.doi.org/10.7243/2055-091X-2-8
48. Razavi S, Razavi MR, Kheirollahi-Kouhestani M, Mardani M, Mostafavi FS. Co-culture with neurotrophic factor secreting cells induced from adipose-derived stem cells: promotes neurogenic differentiation. Biochem Biophys Res Commun. 2013 Oct; 440(3): 381-87. doi: 10.1016/j.bbrc.2013.09.069
49. Levkovitch-Verbin H, Sadan O, Vander S, Rosner M, Barhum Y, Melamed E, et al. Intravitreal injections of neurotrophic factors secreting mesenchymal stem cells are neuroprotective in rat eyes following optic nerve transection. Invest Ophthalmol Vis Sci. 2010 Dec; 51(12): 6394-400. doi: 10.1167/iovs.09-4310
50. Barhum Y, Gai-Castro S, Bahat-Stromza M, Barzilay R, Melamed E, Offen D. Intracerebroventricular transplantation of human mesenchymal stem cells induced to secrete neurotrophic factors attenuates clinical symptoms in a mouse model of multiple sclerosis. J Mol Neurosci. 2010 May; 41(1): 129-37. doi: 10.1007/s12031-009-9302-8
Send email to the article author


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghasemi N. The effect of neurotrophic factors in multiple sclerosis treatment: A review. J Gorgan Univ Med Sci 2018; 20 (4) :1-8
URL: http://goums.ac.ir/journal/article-1-3534-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 20, Issue 4 (12-2018) Back to browse issues page
مجله دانشگاه علوم پزشکی گرگان Journal of Gorgan University of Medical Sciences
Persian site map - English site map - Created in 0.04 seconds with 35 queries by YEKTAWEB 4660
Creative Commons License
This work is licensed under a Creative Commons — Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)