[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Indexing Databases::
Editorial Board::
Executive Members::
Instruction to Authors::
Peer Review::
Articles Archive::
Contact Us::
Site Facilities::
::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
:: ::
Back to the articles list Back to browse issues page
3
Elaheh Arianfar1 , Ghazaleh Alizad2 , Ali Memarian *3
1- M.Sc in Immunology, Department of Immunology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
2- Golestan Research Center of Gastroenterology and Hepatology (GRCGH), Golestan University of Medical Sciences, Gorgan, Iran.
3- Associate Professor, Department of Immunology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran. , alimemarian@goums.ac.ir
Abstract:   (343 Views)
This article has no abstract.
Keywords: Breast Neoplasms [MeSH], T-Lymphocytes [MeSH], Receptors, CXCR3 [MeSH], Programmed Cell Death 1 Receptor [MeSH], NK Cell Lectin-Like Receptor Subfamily K [MeSH], Receptors, Transforming Growth Factor beta [MeSH], Interferon-gamma [MeSH], MHC class I-related chain A [MeSH]
Article ID: Vol27-23
Full-Text [PDF 1813 kb]   (62 Downloads)    
Type of Study: Original Articles | Subject: Immunology
References
1. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024 May-Jun;74(3):229-63. https://doi.org/10.3322/caac.21834. [DOI] [PubMed]
2. Khan NAJ, Tirona M. An updated review of epidemiology, risk factors, and management of male breast cancer. Med Oncol. 2021 Mar;38(4):39. https://doi.org/10.1007/s12032-021-01486-x. [DOI] [PubMed]
3. Farhood B, Geraily G, Alizadeh A. Incidence and Mortality of Various Cancers in Iran and Compare to Other Countries: A Review Article. Iran J Public Health. 2018 Mar;47(3):309-16. [PubMed]
4. Meshkani Z, Moradi N, Aboutorabi A, Farabi H, Moini N. A cost-benefit analysis of genetic screening test for breast cancer in Iran. BMC Cancer. 2024 Mar;24(1):279. https://doi.org/10.1186/s12885-024-12003-4. [DOI] [PubMed]
5. Ostroumova E, Preston DL, Ron E, Krestinina L, Davis FG, Kossenko M, et al. Breast cancer incidence following low-dose rate environmental exposure: Techa River Cohort, 1956-2004. Br J Cancer. 2008 Dec 2;99(11):1940-45. https://doi.org/10.1038/sj.bjc.6604775. [DOI] [PubMed]
6. Chamorro DF, Somes LK, Hoyos V. Engineered Adoptive T-Cell Therapies for Breast Cancer: Current Progress, Challenges, and Potential. Cancers (Basel). 2023 Dec 26;16(1):124. https://doi.org/10.3390/cancers16010124. [DOI] [PubMed]
7. Philip M, Schietinger A. CD8+ T cell differentiation and dysfunction in cancer. Nat Rev Immunol. 2022 Apr;22(4):209-23. https://doi.org/10.1038/s41577-021-00574-3. [DOI] [PubMed]
8. Prajapati K, Perez C, Rojas LBP, Burke B, Guevara-Patino JA. Functions of NKG2D in CD8+ T cells: an opportunity for immunotherapy. Cell Mol Immunol. 2018 May;15(5):470-79. https://doi.org/10.1038/cmi.2017.161. [DOI] [PubMed]
9. Raulet DH. Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol. 2003 Oct;3(10):781-90. https://doi.org/10.1038/nri1199. [DOI] [PubMed]
10. Arianfar E, Khandoozi SR, Mohammadi S, Memarian A. Suppression of CD56bright NK cells in breast cancer patients is associated with the PD-1 and TGF-βRII expression. Clin Transl Oncol. 2023 Mar;25(3):841-51. https://doi.org/10.1007/s12094-022-02997-3. [DOI] [PubMed]
11. Mistry AR, O'Callaghan CA. Regulation of ligands for the activating receptor NKG2D. Immunology. 2007 Aug;121(4):439-47. https://doi.org/10.1111/j.1365-2567.2007.02652.x. [DOI] [PubMed]
12. Sáez-Borderías A, Gumá M, Angulo A, Bellosillo B, Pende D, López-Botet M. Expression and function of NKG2D in CD4+ T cells specific for human cytomegalovirus. Eur J Immunol. 2006 Dec;36(12):3198-206. https://doi.org/10.1002/eji.200636682. [DOI] [PubMed]
13. Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol. 2006;24:99-146. https://doi.org/10.1146/annurev.immunol.24.021605.090737. [DOI] [PubMed]
14. Papageorgis P, Stylianopoulos T. Role of TGFβ in regulation of the tumor microenvironment and drug delivery (review). Int J Oncol. 2015 Mar;46(3):933-43. https://doi.org/10.3892/ijo.2015.2816. [DOI] [PubMed]
15. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003 Oct;425(6958):577-84. https://doi.org/10.1038/nature02006. [DOI] [PubMed]
16. Groom JR, Luster AD. CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunol Cell Biol. 2011 Feb;89(2):207-15. https://doi.org/10.1038/icb.2010.158. [DOI] [PubMed]
17. Martín-Fontecha A, Thomsen LL, Brett S, Gerard C, Lipp M, Lanzavecchia A, et al. Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming. Nat Immunol. 2004 Dec;5(12):1260-65. https://doi.org/10.1038/ni1138. [DOI] [PubMed]
18. Engl T, Relja B, Blumenberg C, Müller I, Ringel EM, Beecken WD, et al. Prostate tumor CXC-chemokine profile correlates with cell adhesion to endothelium and extracellular matrix. Life Sci. 2006 Mar;78(16):1784-93. https://doi.org/10.1016/j.lfs.2005.08.019. [DOI] [PubMed]
19. Rubie C, Kollmar O, Frick VO, Wagner M, Brittner B, Gräber S, et al. Differential CXC receptor expression in colorectal carcinomas. Scand J Immunol. 2008 Dec;68(6):635-44. https://doi.org/10.1111/j.1365-3083.2008.02163.x. [DOI] [PubMed]
20. Goldberg-Bittman L, Neumark E, Sagi-Assif O, Azenshtein E, Meshel T, Witz IP, et al. The expression of the chemokine receptor CXCR3 and its ligand, CXCL10, in human breast adenocarcinoma cell lines. Immunol Lett. 2004 Mar;92(1-2):171-78. https://doi.org/10.1016/j.imlet.2003.10.020. [DOI] [PubMed]
21. Gacci M, Serni S, Lapini A, Vittori G, Alessandrini M, Nesi G, et al. CXCR3-B expression correlates with tumor necrosis extension in renal cell carcinoma. J Urol. 2009 Feb;181(2):843-48. https://doi.org/10.1016/j.juro.2008.10.063. [DOI] [PubMed]
22. Hoerning A, Koss K, Datta D, Boneschansker L, Jones CN, Wong IY, et al. Subsets of human CD4(+) regulatory T cells express the peripheral homing receptor CXCR3. Eur J Immunol. 2011 Aug;41(8):2291-302. https://doi.org/10.1002/eji.201041095. [DOI] [PubMed]
23. Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992 Nov;11(11):3887-95. https://doi.org/10.1002/j.1460-2075.1992.tb05481.x. [DOI] [PubMed]
24. Grabie N, Gotsman I, DaCosta R, Pang H, Stavrakis G, Butte MJ, et al. Endothelial programmed death-1 ligand 1 (PD-L1) regulates CD8+ T-cell mediated injury in the heart. Circulation. 2007 Oct;116(18):2062-71. https://doi.org/10.1161/circulationaha.107.709360. [DOI] [PubMed]
25. Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M, Saito T. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med. 2012 Jun; 209(6):1201-17. https://doi.org/10.1084/jem.20112741. [DOI] [PubMed]
26. John LB, Devaud C, Duong CP, Yong CS, Beavis PA, Haynes NM, et al. Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin Cancer Res. 2013 Oct;19(20):5636-46. https://doi.org/10.1158/1078-0432.ccr-13-0458. [DOI] [PubMed]
27. Zhang Z, Liu S, Zhang B, Qiao L, Zhang Y, Zhang Y. T Cell Dysfunction and Exhaustion in Cancer. Front Cell Dev Biol. 2020 Feb;8:17. https://doi.org/10.3389/fcell.2020.00017. [DOI] [PubMed]
28. Formenti SC, Hawtin RE, Dixit N, Evensen E, Lee P, Goldberg JD, et al. Baseline T cell dysfunction by single cell network profiling in metastatic breast cancer patients. J Immunother Cancer. 2019 Jul;7(1):177. https://doi.org/10.1186/s40425-019-0633-x. [DOI] [PubMed]
29. Bates JP, Derakhshandeh R, Jones L, Webb TJ. Mechanisms of immune evasion in breast cancer. BMC Cancer. 2018 May;18(1):556. https://doi.org/10.1186/s12885-018-4441-3. [DOI] [PubMed]
30. Thommen DS, Schumacher TN. T Cell Dysfunction in Cancer. Cancer Cell. 2018 Apr;33(4):547-62. https://doi.org/10.1016/j.ccell.2018.03.012. [DOI] [PubMed]
31. Gharagozloo M, Kalantari H, Rezaei A, Maracy MR, Salehi M, Bahador A, et al. The decrease in NKG2D+ Natural Killer cells in peripheral blood of patients with metastatic colorectal cancer. Bratisl Lek Listy. 2015;116(5):296-301. https://doi.org/10.4149/bll_2015_056. [DOI] [PubMed]
32. Zhang Y, Li X, Zhang J, Mao L. Novel cellular immunotherapy using NKG2D CAR-T for the treatment of cervical cancer. Biomed Pharmacother. 2020 Nov;131:110562. https://doi.org/10.1016/j.biopha.2020.110562. [DOI] [PubMed]
33. McGilvray RW, Eagle RA, Rolland P, Jafferji I, Trowsdale J, Durrant LG. ULBP2 and RAET1E NKG2D ligands are independent predictors of poor prognosis in ovarian cancer patients. Int J Cancer. 2010 Sep;127(6):1412-20. https://doi.org/10.1002/ijc.25156. [DOI] [PubMed]
34. de Kruijf EM, Sajet A, van Nes JG, Putter H, Smit VT, Eagle RA, et al. NKG2D ligand tumor expression and association with clinical outcome in early breast cancer patients: an observational study. BMC Cancer. 2012 Jan 18;12:24. https://doi.org/10.1186/1471-2407-12-24. [DOI] [PubMed]
35. Chen D, Gyllensten U. MICA polymorphism: biology and importance in cancer. Carcinogenesis. 2014 Dec;35(12):2633-42. https://doi.org/10.1093/carcin/bgu215. [DOI] [PubMed]
36. Jia HY, Liu JL, Yuan MZ, Zhou CJ, Sun WD, Zhao JJ, et al. Regulation Roles of MICA and NKG2D in Human Renal Cancer Cells. Asian Pac J Cancer Prev. 2015;16(9):3901-905. https://doi.org/10.7314/apjcp.2015.16.9.3901. [DOI] [PubMed]
37. Groh V, Wu J, Yee C, Spies T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature. 2002 Oct;419(6908):734-38. https://doi.org/10.1038/nature01112. [DOI] [PubMed]
38. Nieto-Velázquez NG, Torres-Ramos YD, Muñoz-Sánchez JL, Espinosa-Godoy L, Gómez-Cortés S, Moreno J, et al. Altered Expression of Natural Cytotoxicity Receptors and NKG2D on Peripheral Blood NK Cell Subsets in Breast Cancer Patients. Transl Oncol. 2016 Oct;9(5):384-91. https://doi.org/10.1016/j.tranon.2016.07.003. [DOI] [PubMed]
39. Zahran AM, Rayan A, Zahran ZAM, Mohamed WMY, Mohamed DO, Abdel-Rahim MH, et al. Overexpression of PD-1 and CD39 in tumor-infiltrating lymphocytes compared with peripheral blood lymphocytes in triple-negative breast cancer. PLoS One. 2022 Jan;17(1):e0262650. https://doi.org/10.1371/journal.pone.0262650. [DOI] [PubMed]
40. Syed Khaja AS, Toor SM, El Salhat H, Faour I, Ul Haq N, Ali BR, et al. Preferential accumulation of regulatory T cells with highly immunosuppressive characteristics in breast tumor microenvironment. Oncotarget. 2017 May;8(20):33159-71. https://doi.org/10.18632/oncotarget.16565. [DOI] [PubMed]
41. Tøndell A, Wahl SGF, Sponaas AM, Sørhaug S, Børset M, Haug M. Ectonucleotidase CD39 and Checkpoint Signalling Receptor Programmed Death 1 are Highly Elevated in Intratumoral Immune Cells in Non-small-cell Lung Cancer. Transl Oncol. 2020 Jan;13(1):17-24. https://doi.org/10.1016/j.tranon.2019.09.003. [DOI] [PubMed]
42. Voron T, Colussi O, Marcheteau E, Pernot S, Nizard M, Pointet AL, et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med. 2015 Feb;212(2):139-48. https://doi.org/10.1084/jem.20140559. [DOI] [PubMed]
43. Viel S, Marçais A, Guimaraes FS, Loftus R, Rabilloud J, Grau M, et al. TGF-β inhibits the activation and functions of NK cells by repressing the mTOR pathway. Sci Signal. 2016 Feb 16;9(415):ra19. https://doi.org/10.1126/scisignal.aad1884. [DOI] [PubMed]
44. Chang WC, Li CH, Chu LH, Huang PS, Sheu BC, Huang SC. Regulatory T Cells Suppress Natural Killer Cell Immunity in Patients With Human Cervical Carcinoma. Int J Gynecol Cancer. 2016 Jan;26(1):156-62. https://doi.org/10.1097/igc.0000000000000578. [DOI] [PubMed]
45. Ko Y, Banerji SS, Liu Y, Li W, Liang J, Soule HD, et al. Expression of transforming growth factor-beta receptor type II and tumorigenicity in human breast adenocarcinoma MCF-7 cells. J Cell Physiol. 1998 Aug;176(2):424-34. https://doi.org/10.1002/(sici)1097-4652(199808)176:2%3C424::aid-jcp21%3E3.0.co;2-1. [DOI] [PubMed]
46. Soufla G, Porichis F, Sourvinos G, Vassilaros S, Spandidos DA. Transcriptional deregulation of VEGF, FGF2, TGF-beta1, 2, 3 and cognate receptors in breast tumorigenesis. Cancer Lett. 2006 Apr;235(1):100-13. https://doi.org/10.1016/j.canlet.2005.04.022. [DOI] [PubMed]
47. Groom JR, Luster AD. CXCR3 in T cell function. Exp Cell Res. 2011 Mar;317(5):620-31. https://doi.org/10.1016/j.yexcr.2010.12.017. [DOI] [PubMed]
48. Mulligan AM, Raitman I, Feeley L, Pinnaduwage D, Nguyen LT, O'Malley FP, et al. Tumoral lymphocytic infiltration and expression of the chemokine CXCL10 in breast cancers from the Ontario Familial Breast Cancer Registry. Clin Cancer Res. 2013 Jan;19(2):336-46. https://doi.org/10.1158/1078-0432.ccr-11-3314. [DOI] [PubMed]
49. Jafarzadeh A, Fooladseresht H, Nemati M, Assadollahi Z, Sheikhi A, Ghaderi A. Higher circulating levels of chemokine CXCL10 in patients with breast cancer: Evaluation of the influences of tumor stage and chemokine gene polymorphism. Cancer Biomark. 2016 Mar;16(4):545-54. https://doi.org/10.3233/cbm-160596. [DOI] [PubMed]
50. Wendel M, Galani IE, Suri-Payer E, Cerwenka A. Natural killer cell accumulation in tumors is dependent on IFN-gamma and CXCR3 ligands. Cancer Res. 2008 Oct;68(20):8437-45. https://doi.org/10.1158/0008-5472.can-08-1440. [DOI] [PubMed]
51. Bronger H, Kraeft S, Schwarz-Boeger U, Cerny C, Stöckel A, Avril S, et al. Modulation of CXCR3 ligand secretion by prostaglandin E2 and cyclooxygenase inhibitors in human breast cancer. Breast Cancer Res. 2012 Feb;14(1):R30. https://doi.org/10.1186/bcr3115. [DOI] [PubMed]
52. Kajitani K, Tanaka Y, Arihiro K, Kataoka T, Ohdan H. Mechanistic analysis of the antitumor efficacy of human natural killer cells against breast cancer cells. Breast Cancer Res Treat. 2012 Jul;134(1):139-55. https://doi.org/10.1007/s10549-011-1944-x. [DOI] [PubMed]
Send email to the article author


XML   Persian Abstract   Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Back to the articles list Back to browse issues page
مجله دانشگاه علوم پزشکی گرگان Journal of Gorgan University of Medical Sciences
Persian site map - English site map - Created in 0.03 seconds with 33 queries by YEKTAWEB 4718
Creative Commons License
This work is licensed under a Creative Commons — Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)